Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Depuydt is active.

Publication


Featured researches published by Tom Depuydt.


Chemical Society Reviews | 2013

Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply

Chalida Klaysom; Tazhi Y. Cath; Tom Depuydt; Ivo Vankelecom

Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the worlds most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.


Radiotherapy and Oncology | 2011

Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.

Tom Depuydt; Dirk Verellen; Olivier C.L. Haas; T. Gevaert; Nadine Linthout; M Duchateau; Koen Tournel; Truus Reynders; K Leysen; Mischa S. Hoogeman; Guy Storme; Mark De Ridder

PURPOSE VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. MATERIALS AND METHODS To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. RESULTS The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)<0.82 mm and similar performance for pan/tilt. Systematic tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. CONCLUSIONS In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy.


Radiotherapy and Oncology | 2013

Initial assessment of tumor tracking with a gimbaled linac system in clinical circumstances: A patient simulation study

Tom Depuydt; K. Poels; Dirk Verellen; Benedikt Engels; C. Collen; Chloe Haverbeke; T. Gevaert; Nico Buls; Gert Van Gompel; Truus Reynders; M Duchateau; Koen Tournel; M. Boussaer; Femke Steenbeke; Frederik Vandenbroucke; Mark De Ridder

PURPOSE To have an initial assessment of the Vero Dynamic Tracking workflow in clinical circumstances and quantify the performance of the tracking system, a simulation study was set up on 5 lung and liver patients. METHODS AND MATERIALS The preparatory steps of a tumor tracking treatment, based on fiducial markers implanted in the tumor, were executed allowing pursuit of the tumor with the gimbaled linac and monitoring X-rays acquisition, however, without activating the 6 MV beam. Data were acquired on workflow time-efficiency, tracking accuracy and imaging exposure. RESULTS The average time between the patient entering the treatment room and the first treatment field was about 9 min. The time for building the correlation model was 3.2 min. Tracking errors of 0.55 and 0.95 mm (1σ) were observed in PAN/TILT direction and a 2D range of 3.08 mm. A skin dose was determined of 0.08 mGy/image, with a source-to-skin distance of 900 mm and kV exposure of 1 mAs. On average 1.8 mGy/min kV skin dose was observed for 1 Hz monitoring. CONCLUSION The Vero tracking solution proved to be fully functional and showed performance comparable with other real-time tracking systems.


Radiotherapy and Oncology | 2014

Treating patients with real-time tumor tracking using the Vero gimbaled linac system: Implementation and first review

Tom Depuydt; K. Poels; Dirk Verellen; Benedikt Engels; C. Collen; Manuela Buleteanu; Robbe Van den Begin; M. Boussaer; M Duchateau; T. Gevaert; Guy Storme; Mark De Ridder

PURPOSE To report on the first clinical application of a real-time tumor tracking (RTTT) solution based on the Vero SBRT gimbaled linac system for treatment of moving tumors. METHODS AND MATERIALS A first group of 10 SBRT patients diagnosed with NSCLC or oligometastatic disease in lung or liver was treated with the RTTT technique. The PTV volumes and OAR exposure were benchmarked against the widely used ITV approach. Based on data acquired during execution of RTTT treatments, a first review was performed of the process. RESULTS The 35% PTV volume reduction with RTTT of the studied single lesions SBRT irradiations of small target volumes is expected to result in a small (<1%) reduction of lung or liver NTCP. A GTV-PTV margin of 5.0mm was applied for treatment planning of RTTT. From patient data on residual geometric uncertainties, a CTV-PTV margin of 3.2mm was calculated. Reduction of the GTV-PTV margin below 5.0mm without better understanding of biological definition of tumor boundaries was discouraged. Total treatment times were reduced to 34.4 min on average. CONCLUSION A considerable PTV volume reduction was achieved applying RTTT and time efficiency for respiratory correlated SBRT was reestablished with Vero RTTT.


International Journal of Radiation Oncology Biology Physics | 2012

Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery.

T. Gevaert; Dirk Verellen; Benedikt Engels; Tom Depuydt; Karina Heuninckx; Koen Tournel; M Duchateau; Truus Reynders; Mark De Ridder

PURPOSE To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch compared with 4DOF positioning for intracranial lesions and to estimate the immobilization characteristics of the BrainLAB frameless mask (BrainLAB AG, Feldkirchen, Germany), more specifically, the setup errors and intrafraction motion. METHODS AND MATERIALS We enrolled 40 patients with 66 brain metastases treated with frameless stereotactic radiosurgery and a 6DOF robotic couch. Patient positioning was performed with the BrainLAB ExacTrac stereoscopic X-ray system. Positioning results were collected before and after treatment to assess patient setup error and intrafraction motion. Existing treatment planning data were loaded and simulated for 4DOF positioning and compared with the 6DOF positioning. The clinical relevance was analyzed by means of the Paddick conformity index and the ratio of prescribed isodose volume covered with 4DOF to that obtained with the 6DOF positioning. RESULTS The mean three-dimensional setup error before 6DOF correction was 1.91 mm (SD, 1.25 mm). The rotational errors were larger in the longitudinal (mean, 0.23°; SD, 0.82°) direction compared with the lateral (mean, -0.09°; SD, 0.72°) and vertical (mean, -0.10°; SD, 1.03°) directions (p < 0.05). The mean three-dimensional intrafraction shift was 0.58 mm (SD, 0.42 mm). The mean intrafractional rotational errors were comparable for the vertical, longitudinal, and lateral directions: 0.01° (SD, 0.35°), 0.03° (SD, 0.31°), and -0.03° (SD, 0.33°), respectively. The mean conformity index decreased from 0.68 (SD, 0.08) (6DOF) to 0.59 (SD, 0.12) (4DOF) (p < 0.05). A loss of prescribed isodose coverage of 5% (SD, 0.08) was found with the 4DOF positioning (p < 0.05). Half a degree for longitudinal and lateral rotations can be identified as a threshold for coverage loss. CONCLUSIONS With a mask immobilization, patient setup error and intrafraction motions need to be evaluated and corrected for. The 6DOF patient positioning with a 6DOF robotic couch to correct translational and rotational setup errors improves target positioning with respect to treatment isocenter, which is in direct relation with the clinical outcome, compared with the 4DOF positioning.


Radiation Oncology | 2007

Hypofractionated intensity modulated irradiation for localized prostate cancer, results from a phase I/II feasibility study

S. Junius; Karin Haustermans; Barbara Bussels; Raymond Oyen; Bianca Vanstraelen; Tom Depuydt; Jan Verstraete; Steven Joniau; Hendrik Van Poppel

BackgroundTo assess acute (primary endpoint) and late toxicity, quality of life (QOL), biochemical or clinical failure (secondary endpoints) of a hypofractionated IMRT schedule for prostate cancer (PC).Methods38 men with localized PC received 66 Gy (2.64 Gy) to prostate,2 Gy to seminal vesicles (50 Gy total) using IMRT.Acute toxicity was evaluated weekly during radiotherapy (RT), at 1–3 months afterwards using RTOG acute scoring system. Late side effects were scored at 6, 9, 12, 16, 20, 24 and 36 months after RT using RTOG/EORTC criteria.Quality of life was assessed by EORTC-C30 questionnaire and PR25 prostate module. Biochemical failure was defined using ASTRO consensus and nadir+2 definition, clinical failure as local, regional or distant relapse.ResultsNone experienced grade III-IV toxicity. 10% had no acute genito-urinary (GU) toxicity, 63% grade I; 26% grade II. Maximum acute gastrointestinal (GI) scores 0, I, II were 37%, 47% and 16%. Maximal acute toxicity was reached weeks 4–5 and resolved within 4 weeks after RT in 82%.Grade II rectal bleeding needing coagulation had a peak incidence of 18% at 16 months after RT but is 0% at 24–36 months. One developed a urethral stricture at 2 years (grade II late GU toxicity) successfully dilated until now. QOL urinary symptom scores reached a peak incidence 1 month after RT but normalized 6 months later. Bowel symptom scores before, at 1–6 months showed similar values but rose slowly 2–3 years after RT. Nadir of sexual symptom scores was reached 1–6 months after RT but improved 2–3 years later as well as physical, cognitive and role functional scales.Emotional, social functional scales were lowest before RT when diagnosis was given but improved later. Two years after RT global health status normalized.ConclusionThis hypofractionated IMRT schedule for PC using 25 fractions of 2.64 Gy did not result in severe acute side effects. Until now late urethral, rectal toxicities seemed acceptable as well as failure rates. Detailed analysis of QOL questionnaires resulted in the same conclusion.


Radiotherapy and Oncology | 2013

Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas

T. Gevaert; Marc Levivier; T. Lacornerie; Dirk Verellen; Benedikt Engels; Nick Reynaert; Koen Tournel; M Duchateau; Truus Reynders; Tom Depuydt; C. Collen; Eric Lartigau; Mark De Ridder

PURPOSE We investigated the influence of beam modulation on treatment planning by comparing four available stereotactic radiosurgery (SRS) modalities: Gamma-Knife-Perfexion, Novalis-Tx Dynamic-Conformal-Arc (DCA) and Dynamic-Multileaf-Collimation-Intensity-Modulated-radiotherapy (DMLC-IMRT), and Cyberknife. MATERIAL AND METHODS Patients with arteriovenous malformation (n = 10) or acoustic neuromas (n = 5) were planned with different treatment modalities. Paddick conformity index (CI), dose heterogeneity (DH), gradient index (GI) and beam-on time were used as dosimetric indices. RESULTS Gamma-Knife-Perfexion can achieve high degree of conformity (CI = 0.77 ± 0.04) with limited low-doses (GI = 2.59 ± 0.10) surrounding the inhomogeneous dose distribution (D(H) = 0.84 ± 0.05) at the cost of treatment time (68.1 min ± 27.5). Novalis-Tx-DCA improved this inhomogeneity (D(H) = 0.30 ± 0.03) and treatment time (16.8 min ± 2.2) at the cost of conformity (CI = 0.66 ± 0.04) and Novalis-TX-DMLC-IMRT improved the DCA CI (CI = 0.68 ± 0.04) and inhomogeneity (D(H) = 0.18 ± 0.05) at the cost of low-doses (GI = 3.94 ± 0.92) and treatment time (21.7 min ± 3.4) (p<0.01). Cyberknife achieved comparable conformity (CI = 0.77 ± 0.06) at the cost of low-doses (GI = 3.48 ± 0.47) surrounding the homogeneous (D(H) = 0.22 ± 0.02) dose distribution and treatment time (28.4min±8.1) (p<0.01). CONCLUSIONS Gamma-Knife-Perfexion will comply with all SRS constraints (high conformity while minimizing low-dose spread). Multiple focal entries (Gamma-Knife-Perfexion and Cyberknife) will achieve better conformity than High-Definition-MLC of Novalis-Tx at the cost of treatment time. Non-isocentric beams (Cyberknife) or IMRT-beams (Novalis-Tx-DMLC-IMRT) will spread more low-dose than multiple isocenters (Gamma-Knife-Perfexion) or dynamic arcs (Novalis-Tx-DCA). Inverse planning and modulated fluences (Novalis-Tx-DMLC-IMRT and CyberKnife) will deliver the most homogeneous treatment. Furthermore, Linac-based systems (Novalis and Cyberknife) can perform image verification at the time of treatment delivery.


Radiotherapy and Oncology | 2010

IMRT-based optimization approaches for volumetric modulated single arc radiotherapy planning

Wouter Crijns; Tom Budiharto; G. Defraene; Jan Verstraete; Tom Depuydt; Karin Haustermans; Frank Van den Heuvel

This paper reports on an evaluation of 5 RapidArc optimization approaches vs IMRT. This study includes 11 patients with adenocarcinoma of the prostate. Rectal Normal Tissue Complication Probability is used as a constraint in a dose escalation. RapidArc rectal NTCPs are lower than those of IMRT (p = 0.007). This allows a mean dose escalation of 2.1 Gy([0.7 Gy,3.5 Gy]).


Radiotherapy and Oncology | 2013

A complementary dual-modality verification for tumor tracking on a gimbaled linac system

K. Poels; Tom Depuydt; Dirk Verellen; Benedikt Engels; C. Collen; Steffen Heinrich; M Duchateau; Truus Reynders; K Leysen; M. Boussaer; Femke Steenbeke; Koen Tournel; T. Gevaert; Guy Storme; Mark De Ridder

BACKGROUND AND PURPOSE For dynamic tracking of moving tumors, robust intra-fraction verification was required, to assure that tumor motion was properly managed during the course of radiotherapy. A dual-modality verification system, consisting of an on-board orthogonal kV and planar MV imaging device, was validated and applied retrospectively to patient data. METHODS AND MATERIALS Real-time tumor tracking (RTTT) was managed by applying PAN and TILT angular corrections to the therapeutic beam using a gimbaled linac. In this study, orthogonal X-ray imaging and MV EPID fluoroscopy was acquired simultaneously. The tracking beam position was derived from respectively real-time gimbals log files and the detected field outline on EPID. For both imaging modalities, the moving target was localized by detection of an implanted fiducial. The dual-modality tracking verification was validated against a high-precision optical camera in phantom experiments and applied to clinical tracking data from a liver and two lung cancer patients. RESULTS Both verification modalities showed a high accuracy (<0.3mm) during validation on phantom. Marker detection on EPID was influenced by low image contrast. For the clinical cases, gimbaled tracking showed a 90th percentile error (E90) of 3.45 (liver), 2.44 (lung A) and 3.40 mm (lung B) based on EPID fluoroscopy and good agreement with XR-log file data by an E90 of 3.13, 1.92 and 3.33 mm, respectively, during beam on. CONCLUSION Dual-modality verification was successfully implemented, offering the possibility of detailed reporting on RTTT performance.


Cancers | 2015

Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review

Dirk De Ruysscher; E. Sterpin; Karin Haustermans; Tom Depuydt

Movement of tumours, mostly by respiration, has been a major problem for treating lung cancer, liver tumours and other locations in the abdomen and thorax. Organ motion is indeed one component of geometrical uncertainties that includes delineation and target definition uncertainties, microscopic disease and setup errors. At present, minimising motion seems to be the easiest to implement in clinical practice. If combined with adaptive approaches to correct for gradual anatomical variations, it may be a practical strategy. Other approaches such as repainting and tracking could increase the accuracy of proton therapy delivery, but advanced 4D solutions are needed. Moreover, there is a need to perform clinical studies to investigate which approach is the best in a given clinical situation. The good news is that existing and emerging technology and treatment planning systems as will without doubt lead in the forthcoming future to practical solutions to tackle intra-fraction motion in proton therapy. These developments may also improve motion management in photon therapy as well.

Collaboration


Dive into the Tom Depuydt's collaboration.

Top Co-Authors

Avatar

K. Poels

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

D. Verellen

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar

Karin Haustermans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

T. Gevaert

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

M. De Ridder

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar

M Duchateau

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Truus Reynders

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Koen Tournel

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Wouter Crijns

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Benedikt Engels

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge