Kaia Palm
Tallinn University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaia Palm.
Journal of Neuroscience Research | 2007
Tamara Aid; Anna Kazantseva; Marko Piirsoo; Kaia Palm; Tõnis Timmusk
Brain‐derived neurotrophic factor (BDNF) has important functions in the development of the nervous system and in brain plasticity‐related processes such as memory, learning, and drug addiction. Despite the fact that the function and regulation of rodent BDNF gene expression have received close attention during the last decade, knowledge of the structural organization of mouse and rat BDNF gene has remained incomplete. We have identified and characterized several mouse and rat BDNF transcripts containing novel 5′ untranslated exons and introduced a new numbering system for mouse and rat BDNF exons. According to our results both mouse and rat BDNF gene consist of eight 5′ untranslated exons and one protein coding 3′ exon. Transcription of the gene results in BDNF transcripts containing one of the eight 5′ exons spliced to the protein coding exon and in a transcript containing only 5′ extended protein coding exon. We also report the distinct tissue‐specific expression profiles of each of the mouse and rat 5′ exon‐specific transcripts in different brain regions and nonneural tissues. In addition, we show that kainic acid‐induced seizures that lead to changes in cellular Ca2+ levels as well as inhibition of DNA methylation and histone deacetylation contribute to the differential regulation of the expression of BDNF transcripts. Finally, we confirm that mouse and rat BDNF gene loci do not encode antisense mRNA transcripts, suggesting that mechanisms of regulation for rodent and human BDNF genes differ substantially.
Genomics | 2007
Priit Pruunsild; Anna Kazantseva; Tamara Aid; Kaia Palm; Tõnis Timmusk
Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor family of neurotrophins, has central roles in the development, physiology, and pathology of the nervous system. We have elucidated the structure of the human BDNF gene, identified alternative transcripts, and studied their expression in adult human tissues and brain regions. In addition, the transcription initiation sites for human BDNF transcripts were determined and the activities of BDNF promoters were analyzed in transient overexpression assays. Our results show that the human BDNF gene has 11 exons and nine functional promoters that are used tissue and brain-region specifically. Furthermore, noncoding natural antisense RNAs that display complex splicing and expression patterns are transcribed in the BDNF gene locus from the antiBDNF gene (approved gene symbol BDNFOS). We show that BDNF and antiBDNF transcripts form dsRNA duplexes in the brain in vivo, suggesting an important role for antiBDNF in regulating BDNF expression in human.
Journal of Neurochemistry | 2009
Anna Kazantseva; Mari Sepp; Jekaterina Kazantseva; Helle Sadam; Priit Pruunsild; Tõnis Timmusk; Toomas Neuman; Kaia Palm
J. Neurochem. (2009) 109, 807–818.
PLOS ONE | 2013
Jekaterina Kazantseva; Anri Kivil; Kairit Tints; Anna Kazantseva; Toomas Neuman; Kaia Palm
Transcription factor IID (TFIID) activity can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. Alternative splicing of TFIID subunits is often the result of external stimulation of upstream signaling pathways. We studied tissue distribution and cellular expression of different splice variants of TFIID subunit TAF4 mRNA and biochemical properties of its isoforms in human mesenchymal stem cells (hMSCs) to reveal the role of different isoforms of TAF4 in the regulation of proliferation and differentiation. Expression of TAF4 transcripts with exons VI or VII deleted, which results in a structurally modified hTAF4-TAFH domain, increases during early differentiation of hMSCs into osteoblasts, adipocytes and chondrocytes. Functional analysis data reveals that TAF4 isoforms with the deleted hTAF4-TAFH domain repress proliferation of hMSCs and preferentially promote chondrogenic differentiation at the expense of other developmental pathways. This study also provides initial data showing possible cross-talks between TAF4 and TP53 activity and switching between canonical and non-canonical WNT signaling in the processes of proliferation and differentiation of hMSCs. We propose that TAF4 isoforms generated by the alternative splicing participate in the conversion of the cellular transcriptional programs from the maintenance of stem cell state to differentiation, particularly differentiation along the chondrogenic pathway.
Genesis | 2010
Indrek Koppel; Tamara Aid-Pavlidis; Kaur Jaanson; Mari Sepp; Kaia Palm; Tõnis Timmusk
Brain‐derived neurotrophic factor (BDNF), a member of the neurotrophin family of neurotrophic factors, has important functions in the peripheral and central nervous system of vertebrates. We have generated bacterial artificial chromosome (BAC) transgenic mice harboring 207 kb of the rat BDNF (rBDNF) locus containing the gene, 13 kb of genomic sequences upstream of BDNF exon I, and 144 kb downstream of protein encoding exon IX, in which protein coding region was replaced with the lacZ reporter gene. This BDNF‐BAC drove transgene expression in the brain, heart, and lung, recapitulating endogenous BDNF expression to a larger extent than shorter rat BDNF transgenes employed previously. Moreover, kainic acid induced the expression of the transgenic BDNF mRNA in the cerebral cortex and hippocampus through preferential activation of promoters I and IV, thus recapitulating neuronal activity‐dependent transcription of the endogenous BDNF gene. genesis 48:214–219, 2010.
Journal of General Virology | 2017
Maria Anastasina; Ausra Domanska; Kaia Palm; Sarah J. Butcher
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Biochemical and Biophysical Research Communications | 2009
Grete Rullinkov; Richard Tamme; Anzelika Sarapuu; Juha Laurén; Mari Sepp; Kaia Palm; Tõnis Timmusk
Delta-Notch signaling is a universal cell-cell communication pathway crucial for numerous developmental and physiological processes. Several proteins interact with and regulate the Notch pathway, including the E3 ubiquitin ligase Neuralized (Neur) that influences the stability and activity of Notch ligands. In mammals there are two homologs of Neur, Neur1 and Neur2, that both can interact with Notch ligands Delta-like1 and Jagged1. Here, we show that Neur2, in contrast to Neur1, is highly expressed during embryonic development of the brain and several non-neural tissues and its mRNA levels subside postnatally. In the hippocampal neurons of the adult brain Neur2 transcripts, in contrast to Neur1, are excluded from the dendrites. Neur2 protein has a predominantly cytoplasmic localization. We also show that in addition to Delta-like1, Neur1 and Neur2 interact with another Notch ligand, Delta-like4.
Biochimica et Biophysica Acta | 2016
Helle Sadam; Urmas Liivas; Anna Kazantseva; Priit Pruunsild; Jekaterina Kazantseva; Tõnis Timmusk; Toomas Neuman; Kaia Palm
High activity of GLI family zinc finger protein 2 (GLI2) promotes tumor progression. Removal of the repressor domain at the N terminus (GLI2∆N) by recombinant methods converts GLI2 into a powerful transcriptional activator. However, molecular mechanisms leading to the formation of GLI2∆N activator proteins have not been established. Herein we report for the first time that the functional activities of GLI2 are parted into different protein isoforms by alternative promoter usage, selection of alternative splicing, transcription initiation and termination sites. Functional studies using melanoma cells revealed that transcriptional regulation of GLI2 is TGFbeta-dependent and supports the predominant production of GLI2∆N and C-terminally truncated GLI2 (GLI2∆C) isoforms in cells with high migratory and invasive phenotype. Taken together, these results highlight the role of transcription and RNA processing as major processes in the regulation of GLI2 activity with severe impacts in cancer development.
International Journal of Molecular Sciences | 2014
Jekaterina Kazantseva; Kaia Palm
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of “core transcription machinery” during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
EBioMedicine | 2018
Helle Sadam; Arno Pihlak; Anri Kivil; Susan Pihelgas; Mariliis Jaago; Priit Adler; Jaak Vilo; Olli Vapalahti; Toomas Neuman; Dan Lindholm; Markku Partinen; Antti Vaheri; Kaia Palm
Background Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. Methods Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. Findings Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. Interpretation We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.