Priit Pruunsild
Tallinn University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Priit Pruunsild.
Genomics | 2007
Priit Pruunsild; Anna Kazantseva; Tamara Aid; Kaia Palm; Tõnis Timmusk
Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor family of neurotrophins, has central roles in the development, physiology, and pathology of the nervous system. We have elucidated the structure of the human BDNF gene, identified alternative transcripts, and studied their expression in adult human tissues and brain regions. In addition, the transcription initiation sites for human BDNF transcripts were determined and the activities of BDNF promoters were analyzed in transient overexpression assays. Our results show that the human BDNF gene has 11 exons and nine functional promoters that are used tissue and brain-region specifically. Furthermore, noncoding natural antisense RNAs that display complex splicing and expression patterns are transcribed in the BDNF gene locus from the antiBDNF gene (approved gene symbol BDNFOS). We show that BDNF and antiBDNF transcripts form dsRNA duplexes in the brain in vivo, suggesting an important role for antiBDNF in regulating BDNF expression in human.
The Journal of Neuroscience | 2011
Priit Pruunsild; Mari Sepp; Ester Orav; Indrek Koppel; Tõnis Timmusk
Brain-derived neurotrophic factor (BDNF) is an important mediator of activity-dependent functions of the nervous system and its expression is dysregulated in several neuropsychiatric disorders. Regulation of rodent BDNF neuronal activity-dependent transcription has been relatively well characterized. Here, we have studied regulation of human BDNF (hBDNF) transcription by membrane depolarization of cultured mouse or rat primary cortical neurons expressing hBDNF gene or transfected with hBDNF promoter constructs, respectively. We identified an asymmetric E-box-like element, PasRE [basic helix-loop-helix (bHLH)-PAS transcription factor response element], in hBDNF promoter I and demonstrate that binding of this element by bHLH-PAS transcription factors ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) and NPAS4 (neuronal PAS domain protein 4) is crucial for neuronal activity-dependent transcription from promoter I. We show that binding of CREB (cAMP response element-binding protein) to the cAMP/Ca2+-response element (CRE) in hBDNF promoter IV is critical for activity-dependent transcription from this promoter and that upstream stimulatory factor (USF) transcription factors also contribute to the activation by binding to the upstream stimulatory factor binding element (UBE) in hBDNF promoter IV. However, we report that full induction of hBDNF exon IV mRNA transcription is dependent on ARNT2 and NPAS4 binding to a PasRE in promoter IV. Finally, we demonstrate that CRE and PasRE elements in hBDNF promoter IX are required for the induction of this promoter by neuronal activity. Together, the results of this study have identified the cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene.
European Neuropsychopharmacology | 2009
Nina N. Karpova; Jesse Lindholm; Priit Pruunsild; Tõnis Timmusk; Eero Castrén
There is evidence that antidepressant drug treatment during a critical period of postnatal development renders mice susceptible to depression- and anxiety-related behaviour in adulthood. The mechanism of how early antidepressant treatment brings about long-term effects in emotional behaviour is not yet understood, but neurotrophins, particularly brain-derived neurotrophic factor (BDNF), have been implicated in this context. We examined the long-term effects of a transient early postnatal fluoxetine treatment on depression- and anxiety-related behaviours as well as gene expression of BDNF and its receptor TrkB in C57BL/6J mice. Treatment with fluoxetine between postnatal days P4 and P21 resulted in a significant loss of body weight and long-lasting behavioural inhibition in adult mice in response to stressful events such as the light-dark or open field tests. Postnatal fluoxetine exposure also decreased behavioural despair in the forced swim test. Both body weight and behavioural alterations were restored by chronic fluoxetine treatment in adulthood. The behavioral alterations were accompanied by changes in hippocampal BDNF mRNA. Specifically, we show that early-life fluoxetine exposure resulted in the long-term upregulation of BDNF expression in adult mice. However, chromatin immunoprecipitation studies did not reveal any changes in the acetylation or trimethylation of histone H3 at the BDNF promoters. Our experiments show that behavioural and molecular changes induced by early postnatal fluoxetine administration are reversed by chronic fluoxetine treatment of adult mice to control levels.
Journal of Biological Chemistry | 2007
Pavel Uvarov; Anastasia Ludwig; Marika Markkanen; Priit Pruunsild; Kai Kaila; Eric Delpire; Tõnis Timmusk; Claudio Rivera; Matti S. Airaksinen
The neuronal K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the hyperpolarizing actions of inhibitory neurotransmitters γ-aminobutyric acid and glycine in the central nervous system. This study shows that the mammalian KCC2 gene (alias Slc12a5) generates two neuron-specific isoforms by using alternative promoters and first exons. The novel KCC2a isoform differs from the only previously known KCC2 isoform (now termed KCC2b) by 40 unique N-terminal amino acid residues, including a putative Ste20-related proline alanine-rich kinase-binding site. Ribonuclease protection and quantitative PCR assays indicated that KCC2a contributes 20–50% of total KCC2 mRNA expression in the neonatal mouse brain stem and spinal cord. In contrast to the marked increase in KCC2b mRNA levels in the cortex during postnatal development, the overall expression of KCC2a remains relatively constant and makes up only 5–10% of total KCC2 mRNA in the mature cortex. A rubidium uptake assay in human embryonic kidney 293 cells showed that the KCC2a isoform mediates furosemide-sensitive ion transport activity comparable with that of KCC2b. Mice that lack both KCC2 isoforms die at birth due to severe motor defects, including disrupted respiratory rhythm, whereas mice with a targeted disruption of the first exon of KCC2b survive for up to 2 weeks but eventually die due to spontaneous seizures. We show that these mice lack KCC2b but retain KCC2a mRNA. Thus, distinct populations of neurons show a differential dependence on the expression of the two isoforms: KCC2a expression in the absence of KCC2b is presumably sufficient to support vital neuronal functions in the brain stem and spinal cord but not in the cortex.
The Journal of Neuroscience | 2009
Aruna Vashishta; Agata Habas; Priit Pruunsild; Jing-Juan Zheng; Tõnis Timmusk; Michal Hetman
During cortical development, when NR2B subunit is the major component of the NMDA glutamate receptors (NMDARs), moderate NMDAR activity supports neuronal survival at least in part by regulating gene transcription. We report that, in cultured cortical neurons from newborn rats, the NMDARs activated the calcium-responsive transcription regulator nuclear factor of activated T cells (NFAT). Moreover, in developing rat cortex, the NFAT isoforms c3 and c4 (NFATc3 and NFATc4) were expressed at relatively higher levels at postnatal day 7 (P7) than P21, overlapping with the period of NMDAR-dependent survival. In cultured cortical neurons, NFATc3 and NFATc4 were regulated at least in part by the NR2B NMDAR. Conversely, knockdown of NFATc4 but not NFATc3 induced cortical neuron apoptosis. Likewise, NFATc4 inhibition prevented antiapoptotic neuroprotection in response to exogenous NMDA. Expression of the brain-derived neurotrophic factor (BDNF) was reduced by NFATc4 inhibition. NFATc4 regulated transcription by the NMDAR-responsive bdnf promoter IV. In addition, NMDAR blockers including NR2B-selective once reduced BDNF expression in P7 cortex and cultured cortical neurons. Finally, exogenous BDNF rescued from the proapoptotic effects of NFATc4 inhibition. These results identify bdnf as one of the target genes for the antiapoptotic signaling by NMDAR–NFATc4. Thus, the previously unrecognized NMDAR–NFATc4–BDNF pathway contributes to the survival signaling network that supports cortical development.
Genomics | 2008
Hanna Vihma; Priit Pruunsild; Tõnis Timmusk
Four members of the nuclear factor of activated T cells (NFAT) family (NFATC1, NFATC2, NFATC3, and NFATC4) are Ca2+-regulated transcription factors that regulate several processes in vertebrates, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems. Here we describe the structures and alternative splicing of the human and mouse NFAT genes, including novel splice variants for NFATC1, NFATC2, NFATC3, and NFATC4, and show the expression of different NFAT mRNAs in various mouse and human tissues and brain regions by RT-PCR. Our results show that alternatively spliced NFAT mRNAs are expressed differentially and could contribute to the diversity of functions of the NFAT proteins. Since NFAT family members are Ca2+-regulated and have critical roles in neuronal gene transcription in response to electrical activity, we describe the expression of NFATC1, NFATC2, NFATC3, and NFATC4 mRNAs in the adult mouse brain and in the adult human hippocampus using in situ hybridization and show that all NFAT mRNAs are expressed in the neurons of the mouse brain with specific patterns for each NFAT.
European Journal of Neuroscience | 2009
Minna Kairisalo; Laura Korhonen; Mari Sepp; Priit Pruunsild; Jyrki P. Kukkonen; Jenny Kivinen; Tõnis Timmusk; Klas Blomgren; Dan Lindholm
X chromosome‐linked inhibitor of apoptosis protein (XIAP) is an anti‐apoptotic protein enhancing cell survival. Brain‐derived neurotrophic factor (BDNF) also promotes neuronal viability but the links between XIAP and BDNF have remained unclear. We show here that the overexpression of XIAP increases BDNF in transgenic mice and cultured rat hippocampal neurons, whereas downregulation of XIAP by silencing RNA decreased BDNF. XIAP also stimulated BDNF signaling, as shown by increased phosphorylation of the TrkB receptor and the downstream molecule, cAMP response element‐binding protein. The mechanism involved nuclear factor‐κB (NF‐κB) activation and blocking of NF‐κB signaling inhibited the increased activities of BDNF promoters I and IV by XIAP. In neuronal cultures XIAP also upregulated interleukin (IL)‐6, which is an NF‐κB‐responsive gene. The addition of IL‐6 elevated whereas incubation with IL‐6‐blocking antibodies reduced BDNF in the neurons. BDNF itself activated NF‐κB in the neurons at higher concentrations. The data show that XIAP has trophic effects on hippocampal neurons by increasing BDNF and TrkB activity. The results reveal a cytokine network in the brain involving BDNF, IL‐6 and XIAP interconnected via the NF‐κB system.
Journal of Neurochemistry | 2009
Anna Kazantseva; Mari Sepp; Jekaterina Kazantseva; Helle Sadam; Priit Pruunsild; Tõnis Timmusk; Toomas Neuman; Kaia Palm
J. Neurochem. (2009) 109, 807–818.
The Journal of Neuroscience | 2016
Jürgen Tuvikene; Priit Pruunsild; Ester Orav; Eli-Eelika Esvald; Tõnis Timmusk
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. SIGNIFICANCE STATEMENT Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis-elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for obtaining sufficient BDNF levels necessary for various TrkB signaling-dependent physiological outcomes in neurons.
Journal of Neurochemistry | 2012
Priit Pruunsild; Tõnis Timmusk
KCNIP3/KChIP3 (voltage‐dependent K+ channel interacting protein 3), alias Calsenilin and downstream regulatory element antagonist modulator (DREAM), is a multifunctional protein that modulates A‐type potassium channels, affects processing of amyloid precursor protein and regulates transcription. KCNIP3 has been described to negatively influence the activity of CREB (cAMP/Ca2+‐response element binding protein), an essential factor in neuronal activity‐dependent gene expression regulation. However, reports on intracellular localization of KCNIP3 in neurons are diverse and necessitate additional analyses of distribution of KCNIPs in cells to clarify the potential of KCNIP3 to fulfill its functions in different cell compartments. Here, we examined localization of the entire family of highly similar KCNIP proteins in neuronal cells and show that over‐expressed isoforms of KCNIP1/KChIP1, KCNIP2/KChIP2, KCNIP3/KChIP3, and KCNIP4/KChIP4 had varied, yet partially overlapping subcellular localization. In addition, although some of the over‐expressed KCNIP isoforms localized to the nucleus, endogenous KCNIPs were not detected in nuclei of rat primary cortical neurons. Moreover, we analyzed the role of KCNIP proteins in cAMP/Ca2+‐response element (CRE)‐dependent transcription by luciferase reporter assay and electrophoretic mobility shift assay and report that our results do not support the role for KCNIPs, including DREAM/Calsenilin/KChIP3, in modulation of CREB‐mediated transcription in neurons.