Mari Sepp
Tallinn University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mari Sepp.
The Journal of Neuroscience | 2011
Priit Pruunsild; Mari Sepp; Ester Orav; Indrek Koppel; Tõnis Timmusk
Brain-derived neurotrophic factor (BDNF) is an important mediator of activity-dependent functions of the nervous system and its expression is dysregulated in several neuropsychiatric disorders. Regulation of rodent BDNF neuronal activity-dependent transcription has been relatively well characterized. Here, we have studied regulation of human BDNF (hBDNF) transcription by membrane depolarization of cultured mouse or rat primary cortical neurons expressing hBDNF gene or transfected with hBDNF promoter constructs, respectively. We identified an asymmetric E-box-like element, PasRE [basic helix-loop-helix (bHLH)-PAS transcription factor response element], in hBDNF promoter I and demonstrate that binding of this element by bHLH-PAS transcription factors ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) and NPAS4 (neuronal PAS domain protein 4) is crucial for neuronal activity-dependent transcription from promoter I. We show that binding of CREB (cAMP response element-binding protein) to the cAMP/Ca2+-response element (CRE) in hBDNF promoter IV is critical for activity-dependent transcription from this promoter and that upstream stimulatory factor (USF) transcription factors also contribute to the activation by binding to the upstream stimulatory factor binding element (UBE) in hBDNF promoter IV. However, we report that full induction of hBDNF exon IV mRNA transcription is dependent on ARNT2 and NPAS4 binding to a PasRE in promoter IV. Finally, we demonstrate that CRE and PasRE elements in hBDNF promoter IX are required for the induction of this promoter by neuronal activity. Together, the results of this study have identified the cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene.
PLOS ONE | 2011
Mari Sepp; Kaja Kannike; Ave Eesmaa; Mari Urb; Tõnis Timmusk
Background Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. Principal Findings In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5′ exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. Conclusions Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms.
European Journal of Neuroscience | 2009
Minna Kairisalo; Laura Korhonen; Mari Sepp; Priit Pruunsild; Jyrki P. Kukkonen; Jenny Kivinen; Tõnis Timmusk; Klas Blomgren; Dan Lindholm
X chromosome‐linked inhibitor of apoptosis protein (XIAP) is an anti‐apoptotic protein enhancing cell survival. Brain‐derived neurotrophic factor (BDNF) also promotes neuronal viability but the links between XIAP and BDNF have remained unclear. We show here that the overexpression of XIAP increases BDNF in transgenic mice and cultured rat hippocampal neurons, whereas downregulation of XIAP by silencing RNA decreased BDNF. XIAP also stimulated BDNF signaling, as shown by increased phosphorylation of the TrkB receptor and the downstream molecule, cAMP response element‐binding protein. The mechanism involved nuclear factor‐κB (NF‐κB) activation and blocking of NF‐κB signaling inhibited the increased activities of BDNF promoters I and IV by XIAP. In neuronal cultures XIAP also upregulated interleukin (IL)‐6, which is an NF‐κB‐responsive gene. The addition of IL‐6 elevated whereas incubation with IL‐6‐blocking antibodies reduced BDNF in the neurons. BDNF itself activated NF‐κB in the neurons at higher concentrations. The data show that XIAP has trophic effects on hippocampal neurons by increasing BDNF and TrkB activity. The results reveal a cytokine network in the brain involving BDNF, IL‐6 and XIAP interconnected via the NF‐κB system.
Journal of Neurochemistry | 2009
Anna Kazantseva; Mari Sepp; Jekaterina Kazantseva; Helle Sadam; Priit Pruunsild; Tõnis Timmusk; Toomas Neuman; Kaia Palm
J. Neurochem. (2009) 109, 807–818.
Journal of Virology | 2005
Reet Kurg; Kristiina Sild; Aigi Ilves; Mari Sepp; Mart Ustav
ABSTRACT Papillomaviruses are small DNA viruses which have the capacity to establish a persistent infection in mammalian epithelial cells. The papillomavirus E2 protein is a central coordinator of viral gene expression, genome replication, and maintenance. We have investigated the distribution of bovine papillomavirus E2 protein in nuclei of proliferating cells and found that E2 is associated with cellular chromatin. This distribution does not change during the entire cell cycle. The N-terminal transactivation domain, but not the C-terminal DNA-binding domain, of the E2 protein is responsible for this association. The majority of the full-length E2 protein can only be detected in chromatin-enriched fractions but not as a free protein in the nucleus. Limited micrococcal nuclease digestion revealed that the E2 protein partitioned to different chromatin regions. A fraction of the E2 protein was located at nuclear sites that are resistant against nuclease attack, whereas the remaining E2 resided on compact chromatin accessible to micrococcal nuclease. These data suggest that there are two pools of E2 in the cell nucleus: one that localizes on transcriptionally inactive compact chromatin and the other, which compartmentalizes to transcriptionally active nuclear structures of the cell. Our data also suggest that E2 associates with chromatin through cellular protein(s), which in turn is released from chromatin at 0.4 M salt.
Genesis | 2010
Indrek Koppel; Tamara Aid-Pavlidis; Kaur Jaanson; Mari Sepp; Kaia Palm; Tõnis Timmusk
Brain‐derived neurotrophic factor (BDNF), a member of the neurotrophin family of neurotrophic factors, has important functions in the peripheral and central nervous system of vertebrates. We have generated bacterial artificial chromosome (BAC) transgenic mice harboring 207 kb of the rat BDNF (rBDNF) locus containing the gene, 13 kb of genomic sequences upstream of BDNF exon I, and 144 kb downstream of protein encoding exon IX, in which protein coding region was replaced with the lacZ reporter gene. This BDNF‐BAC drove transgene expression in the brain, heart, and lung, recapitulating endogenous BDNF expression to a larger extent than shorter rat BDNF transgenes employed previously. Moreover, kainic acid induced the expression of the transgenic BDNF mRNA in the cerebral cortex and hippocampus through preferential activation of promoters I and IV, thus recapitulating neuronal activity‐dependent transcription of the endogenous BDNF gene. genesis 48:214–219, 2010.
Journal of Biological Chemistry | 2014
Kaja Kannike; Mari Sepp; Chiara Zuccato; Tõnis Timmusk
Background: Forkhead box O (FOXO) transcription factors, integrators of stress and survival signals, have been implicated in neurodegenerative diseases including Huntington disease (HD). Results: FOXO3a regulates its own transcription and its levels are increased in HD. Conclusion: Positive autofeedback loop contributes to elevated FOXO3a activity in HD. Significance: Autoregulation of FOXO3a adds complexity to transcription dysregulation in HD. Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh7/7 (wild type), Hdh7/109 (heterozygous for HD mutation), and Hdh109/109 (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh7/7 cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop.
The Journal of Neuroscience | 2017
Mari Sepp; Hanna Vihma; Kaja Nurm; Mari Urb; Stephanie Cerceo Page; Kaisa Roots; Anu Hark; Brady J. Maher; Priit Pruunsild; Tõnis Timmusk
Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt–Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo. We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders. SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.
Molecular & Cellular Proteomics | 2016
Lukasz P. Slomnicki; Agata Malinowska; Michał Kistowski; Antoni Palusiński; Jing-Juan Zheng; Mari Sepp; Tõnis Timmusk; Michal Dadlez; Michal Hetman
To study nucleolar involvement in brain development, the nuclear and nucleolar proteomes from the rat cerebral cortex at postnatal day 7 were analyzed using LC-MS/iTRAQ methodology. Data of the analysis are available via ProteomeXchange with identifier PXD002188. Among 504 candidate nucleolar proteins, the overrepresented gene ontology terms included such cellular compartmentcategories as “nucleolus”, “ribosome” and “chromatin”. Consistent with such classification, the most overrepresented functional gene ontology terms were related to RNA metabolism/ribosomal biogenesis, translation, and chromatin organization. Sixteen putative nucleolar proteins were associated with neurodevelopmental phenotypes in humans. Microcephaly and/or cognitive impairment were the most common phenotypic manifestations. Although several such proteins have links to ribosomal biogenesis and/or genomic stability/chromatin structure (e.g. EMG1, RPL10, DKC1, EIF4A3, FLNA, SMC1, ATRX, MCM4, NSD1, LMNA, or CUL4B), others including ADAR, LARP7, GTF2I, or TCF4 have no such connections known. Although neither the Alazami syndrome-associated LARP7nor the Pitt-Hopkins syndrome-associated TCF4 were reported in nucleoli of non-neural cells, in neurons, their nucleolar localization was confirmed by immunostaining. In cultured rat hippocampal neurons, knockdown of LARP7 reduced both perikaryal ribosome content and general protein synthesis. Similar anti-ribosomal/anti-translation effects were observed after knockdown of the ribosomal biogenesis factor EMG1 whose deficiency underlies Bowen-Conradi syndrome. Finally, moderate reduction of ribosome content and general protein synthesis followed overexpression of two Pitt-Hopkins syndrome mutant variants of TCF4. Therefore, dysregulation of ribosomal biogenesis and/or other functions of the nucleolus may disrupt neurodevelopment resulting in such phenotypes as microcephaly and/or cognitive impairment.
Biology Open | 2015
Laura Tamberg; Mari Sepp; Tõnis Timmusk; Mari Palgi
ABSTRACT Pitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder. Summary: Introducing mutations of the TCF4 gene found in human patients into its fly orthologue daughterless allows the generation of Drosophila models for research into Pitt-Hopkins syndrome.