Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaike Pan is active.

Publication


Featured researches published by Kaike Pan.


Astrophysical Journal Supplement Series | 2011

A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7

Yue Shen; Gordon T. Richards; Michael A. Strauss; Patrick B. Hall; Donald P. Schneider; Stephanie A. Snedden; Dmitry Bizyaev; Howard J. Brewington; Viktor Malanushenko; Elena Malanushenko; Dan Oravetz; Kaike Pan; Audrey Simmons

We present a compilation of properties of the 105,783 quasars in the SDSS Data Release 7 (DR7) quasar catalog. In this value-added product, we compile continuum and emission line measurements around the Halpha, Hbeta, MgII and CIV regions, as well as other quantities such as radio properties, broad absorption line quasar (BALQSO) flags, and disk emitters. We also compile virial black hole mass estimates based on various calibrations. For the fiducial virial mass estimates we use the Vestergaard & Peterson (VP06) calibrations for Hbeta and CIV, and our own calibration for MgII which matches the VP06 Hbeta masses on average. We describe the construction of this catalog, and discuss its limitations. The catalog and its future updates will be made publicly available online.We present a compilation of properties of the 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog. In this product, we compile continuum and emission line measurements around the Hα, Hβ, Mg II, and C IV regions, as well as other quantities such as radio properties, and flags indicating broad absorption line quasars, disk emitters, etc. We also compile virial black hole mass estimates based on various calibrations. For the fiducial virial mass estimates we use the Vestergaard & Peterson (VP06) calibrations for Hβ and C IV, and our own calibration for Mg II which matches the VP06 Hβ masses on average. We describe the construction of this catalog and discuss its limitations. The catalog and its future updates will be made publicly available online.


The Astronomical Journal | 2013

The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey

Stephen A. Smee; James E. Gunn; Alan Uomoto; N. A. Roe; David J. Schlegel; Constance M. Rockosi; Michael A. Carr; French Leger; Kyle S. Dawson; Matthew D. Olmstead; J. Brinkmann; Russell Owen; Robert H. Barkhouser; K. Honscheid; Paul Harding; Dan Long; Robert H. Lupton; Craig Loomis; Lauren Anderson; James Annis; Mariangela Bernardi; Vaishali Bhardwaj; Dmitry Bizyaev; Adam S. Bolton; Howard J. Brewington; John W. Briggs; Scott Burles; James G. Burns; Francisco J. Castander; Andrew J. Connolly

We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.


Monthly Notices of the Royal Astronomical Society | 2012

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering

Beth Reid; Lado Samushia; Martin White; Will J. Percival; Marc Manera; Nikhil Padmanabhan; A. Ross; Ariel G. Sánchez; S. Bailey; Dmitry Bizyaev; Adam S. Bolton; Howard J. Brewington; J. Brinkmann; Joel R. Brownstein; Antonio J. Cuesta; Daniel J. Eisenstein; James E. Gunn; K. Honscheid; Elena Malanushenko; Viktor Malanushenko; Claudia Maraston; Cameron K. McBride; Demitri Muna; Robert C. Nichol; Daniel Oravetz; Kaike Pan; Roland de Putter; N. A. Roe; Nicholas P. Ross; David J. Schlegel

We analyse the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264 283 galaxies in the redshift range 0.43 0.57, and when combined imply ΩΛ = 0.74 ± 0.016, independent of the Universes evolution at z < 0.57. All of these constraints assume scale-independent linear growth, and assume general relativity to compute both (10 per cent) non-linear model corrections and our errors. In our companion paper, Samushia et al., we explore further cosmological implications of these observations.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey - II:supernova survey: technical summary

Joshua A. Frieman; Bruce A. Bassett; Andrew Cameron Becker; Changsu Choi; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Myungshin Im; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Masao Sako; Donald P. Schneider; Mathew Smith; Naohiro Takanashi

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.


Astronomy and Astrophysics | 2012

Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9

P. Noterdaeme; Patrick Petitjean; W. Carithers; Isabelle Pâris; Andreu Font-Ribera; S. Bailey; E. Aubourg; Dmitry Bizyaev; Hayley Finley; Jian Ge; Elena Malanushenko; Viktor Malanushenko; Jordi Miralda-Escudé; Adam D. Myers; Daniel Oravetz; Kaike Pan; M. M. Pieri; Nicholas P. Ross; Donald P. Schneider; Audrey Simmons; D. G. York

We present the first results from an ongoing survey for damped Lyman-α systems (DLAs) in the spectra of z > 2 quasars observed in the course of the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey (SDSS) III. Our full (non-statistical) sample, based on Data Release 9, comprises 12 081 systems with log N(Hi) ≥ 20, out of which 6839 have logN(Hi) ≥ 20.3. This is the largest DLA sample ever compiled, superseding that from SDSS-II by a factor of seven.


The Astrophysical Journal | 2012

The Milky Way's Circular-velocity Curve between 4 and 14 kpc from APOGEE data

Jo Bovy; Carlos Allende Prieto; Timothy C. Beers; Dmitry Bizyaev; Luiz Nicolaci da Costa; K. Cunha; Daniel J. Eisenstein; Peter M. Frinchaboy; Ana G. Pérez; Léo Girardi; Frederick R. Hearty; David W. Hogg; Jon A. Holtzman; Marcio A. G. Maia; Steven R. Majewski; Elena Malanushenko; Viktor Malanushenko; Szabolcs Mészáros; David L. Nidever; Robert W. O'Connell; Christine O'Donnell; Audrey Oravetz; Kaike Pan; Helio J. Rocha-Pinto; Ricardo P. Schiavon; Donald P. Schneider; Mathias Schultheis; Michael F. Skrutskie; Verne V. Smith; David H. Weinberg

We measure the Milky Ways rotation curve over the Galactocentric range 4 kpc R 14 kpc from the first year of data from the Apache Point Observatory Galactic Evolution Experiment. We model the line-of-sight velocities of 3365 stars in 14 fields with b = 0? between 30? ? l ? 210? out to distances of 10 kpc using an axisymmetric kinematical model that includes a correction for the asymmetric drift of the warm tracer population (? R 35 km s?1). We determine the local value of the circular velocity to be Vc (R 0) = 218 ? 6 km s?1 and find that the rotation curve is approximately flat with a local derivative between ?3.0 km s?1 kpc?1 and 0.4 km s?1 kpc?1. We also measure the Suns position and velocity in the Galactocentric rest frame, finding the distance to the Galactic center to be 8 kpc 99 % confidence. We find an offset between the Suns rotational velocity and the local circular velocity of 26 ? 3 km s?1, which is larger than the locally measured solar motion of 12 km s?1. This larger offset reconciles our value for Vc with recent claims that Vc 240 km s?1. Combining our results with other data, we find that the Milky Ways dark-halo mass within the virial radius is ~8 ? 1011 M ?.


The Astrophysical Journal | 2007

An orphan in the "field of streams"

Vasily Belokurov; N. W. Evans; M. J. Irwin; Donald Lynden-Bell; Brian Yanny; S. Vidrih; G. Gilmore; George M. Seabroke; Daniel B. Zucker; M. I. Wilkinson; Paul C. Hewett; D. M. Bramich; M. Fellhauer; Heidi Jo Newberg; Rosemary F. G. Wyse; Timothy C. Beers; Eric F. Bell; John C. Barentine; J. Brinkmann; Nathan Cole; Kaike Pan; D. G. York

We use Sloan Digital Sky Survey Data Release 5 photometry and spectroscopy to study a tidal stream that extends over ~50° in the north Galactic cap. From the analysis of the path of the stream and the colors and magnitudes of its stars, the stream is ~20 kpc away at its nearest detection (the celestial equator). We detect a distance gradient: the stream is farther away from us at higher declination. The contents of the stream are made up from a predominantly old and metal-poor population that is similar to the globular clusters M13 and M92. The integrated absolute magnitude of the stream stars is estimated to be Mr ~ -7.5. There is tentative evidence for a velocity signature, with the stream moving at ~-40 km s-1 at low declinations and ~+100 km s-1 at high declinations. The stream lies on the same great circle as Complex A, a roughly linear association of H I high-velocity clouds stretching over ~30° on the sky, and as Ursa Major II, a recently discovered dwarf spheroidal galaxy. Lying close to the same great circle are a number of anomalous, young, and metal-poor globular clusters, including Palomar 1 and Ruprecht 106.


The Astronomical Journal | 2008

The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

Young Sun Lee; Timothy C. Beers; Thirupathi Sivarani; Jennifer A. Johnson; Deokkeun An; Ronald Wilhelm; Carlos Allende Prieto; Lars Koesterke; Paola Re Fiorentin; Coryn A. L. Bailer-Jones; John E. Norris; Brian Yanny; Constance M. Rockosi; Heidi Jo Newberg; Kyle M. Cudworth; Kaike Pan

We validate the accuracy and precision of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) and radial velocities (RVs), by comparing these estimates for selected members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its first extension (SDSS-II/SEGUE) are used to determine atmospheric parameter and RV estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, we quantify the typical uncertainty of the SSPP values, σ ([Fe/H]) = 0.13 dex for stars in the range of –0.3 ≤ g – r ≤ 1.3 and 2.0 ≤ log g ≤ 5.0, at least over the metallicity interval spanned by the clusters studied (–2.3 ≤ [Fe/H] ≤ 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of color-magnitude diagrams with stellar evolution models; we find satisfactory agreement (σ(T eff)< 200 K and σ(log g) ≤ 0.4 dex).


Monthly Notices of the Royal Astronomical Society | 2012

The clustering of galaxies in the SDSS‐III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large‐scale two‐point correlation function

Ariel G. Sánchez; Claudia G. Scóccola; A. Ross; Will J. Percival; Marc Manera; Francesco Montesano; X. Mazzalay; Antonio J. Cuesta; Daniel J. Eisenstein; Eyal A. Kazin; Cameron K. McBride; Kushal T. Mehta; Antonio D. Montero-Dorta; Nikhil Padmanabhan; Francisco Prada; J. A. Rubiño-Martín; Rita Tojeiro; Xiaoying Xu; M. Vargas Magaña; Eric Aubourg; Neta A. Bahcall; S. Bailey; Dmitry Bizyaev; Adam S. Bolton; Howard J. Brewington; J. Brinkmann; Joel R. Brownstein; J. Richard Gott; Jean-Christophe Hamilton; Shirley Ho

We obtain constraints on cosmological parameters from the spherically averaged redshift-space correlation function of the CMASS Data Release 9 (DR9) sample of the Baryonic Oscillation Spectroscopic Survey (BOSS). We combine this information with additional data from recent cosmic microwave background (CMB), supernova and baryon acoustic oscillation measurements. Our results show no significant evidence of deviations from the standard flat Λ cold dark matter model, whose basic parameters can be specified by Ωm = 0.285 ± 0.009, 100 Ωb = 4.59 ± 0.09, ns = 0.961 ± 0.009, H0 = 69.4 ± 0.8 km s−1 Mpc−1 and σ8 = 0.80 ± 0.02. The CMB+CMASS combination sets tight constraints on the curvature of the Universe, with Ωk = −0.0043 ± 0.0049, and the tensor-to-scalar amplitude ratio, for which we find r < 0.16 at the 95 per cent confidence level (CL). These data show a clear signature of a deviation from scale invariance also in the presence of tensor modes, with ns < 1 at the 99.7 per cent CL. We derive constraints on the fraction of massive neutrinos of fν < 0.049 (95 per cent CL), implying a limit of ∑mν < 0.51 eV. We find no signature of a deviation from a cosmological constant from the combination of all data sets, with a constraint of wDE = −1.033 ± 0.073 when this parameter is assumed time-independent, and no evidence of a departure from this value when it is allowed to evolve as wDE(a) = w0 + wa(1 − a). The achieved accuracy on our cosmological constraints is a clear demonstration of the constraining power of current cosmological observations.


Monthly Notices of the Royal Astronomical Society | 2012

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics

A. Ross; Will J. Percival; Ariel G. Sánchez; Lado Samushia; Shirley Ho; Eyal A. Kazin; Marc Manera; Beth Reid; Martin White; Rita Tojeiro; Cameron K. McBride; Xiaoying Xu; David A. Wake; Michael A. Strauss; Francesco Montesano; M. E. C. Swanson; S. Bailey; Adam S. Bolton; Antonio D. Dorta; Daniel J. Eisenstein; Hong Guo; Jean-Christophe Hamilton; Robert C. Nichol; Nikhil Padmanabhan; Francisco Prada; David J. Schlegel; Mariana Vargas Magaña; Idit Zehavi; Michael R. Blanton; Dmitry Bizyaev

We analyse the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400 000 galaxies spread over a footprint of 3275 deg2. We identify, characterize and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function, ξl(s), and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 120 h−1 Mpc or k < 0.01 h Mpc−1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. The clustering of CMASS galaxies found in the Northern and Southern Galactic footprints of the survey generally agrees to within 2σ. We use mock galaxy catalogues that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate the radial selection function of a random sample imparts the least systematic error on ξl(s) measurements and that this systematic error is negligible for the spherically averaged correlation function, ξ0. We find a peak in ξ0 at s~ 200 h−1 Mpc, with a corresponding feature with period ~0.03 h Mpc−1 in P(k), and find features at least as strong in 4.8 per cent of the mock galaxy catalogues, concluding this feature is likely to be a consequence of cosmic variance. The methods we recommend for the calculation of clustering measurements using the CMASS sample are adopted in companion papers that locate the position of the baryon acoustic oscillation feature, constrain cosmological models using the full shape of ξ0 and measure the rate of structure growth.

Collaboration


Dive into the Kaike Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry Bizyaev

Sternberg Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar

Jon A. Holtzman

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce A. Bassett

African Institute for Mathematical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge