Kallesh Danappa Jayappa
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kallesh Danappa Jayappa.
Journal of Virology | 2010
Zhujun Ao; Kallesh Danappa Jayappa; Binchen Wang; Yingfeng Zheng; Sam K. P. Kung; Eric Rassart; Reinhard Depping; Matthias Köhler; Éric A. Cohen; Xiaojian Yao
ABSTRACT HIV-1 employs the cellular nuclear import machinery to actively transport its preintegration complex (PIC) into the nucleus for integration of the viral DNA. Several viral karyophilic proteins and cellular import factors have been suggested to contribute to HIV-1 PIC nuclear import and replication. However, how HIV interacts with different cellular machineries to ensure efficient nuclear import of its preintegration complex in dividing and nondividing cells is still not fully understood. In this study, we have investigated different importin α (Impα) family members for their impacts on HIV-1 replication, and we demonstrate that short hairpin RNA (shRNA)-mediated Impα3 knockdown (KD) significantly impaired HIV infection in HeLa cells, CD4+ C8166 T cells, and primary macrophages. Moreover, quantitative real-time PCR analysis revealed that Impα3-KD resulted in significantly reduced levels of viral 2-long-terminal repeat (2-LTR) circles but had no effect on HIV reverse transcription. All of these data indicate an important role for Impα3 in HIV nuclear import. In an attempt to understand how Impα3 participates in HIV nuclear import and replication, we first demonstrated that the HIV-1 karyophilic protein integrase (IN) was able to interact with Impα3 both in a 293T cell expression system and in HIV-infected CD4+ C8166 T cells. Deletion analysis suggested that a region (amino acids [aa] 250 to 270) in the C-terminal domain of IN is involved in this viral-cellular protein interaction. Overall, this study demonstrates for the first time that Impα3 is an HIV integrase-interacting cofactor that is required for efficient HIV-1 nuclear import and replication in both dividing and nondividing cells.
Journal of Biological Chemistry | 2011
Yingfeng Zheng; Zhujun Ao; Binchen Wang; Kallesh Danappa Jayappa; Xiaojian Yao
HIV-1 integrase (IN) is a key viral enzymatic protein acting in several viral replication steps, including integration. IN has been shown to be an unstable protein degraded by the N-end rule pathway through the host ubiquitin-proteasome machinery. However, it is still not fully understood how this viral protein is protected from the host ubiquitin-proteasome system within cells during HIV replication. In the present study, we provide evidence that the host protein Ku70 interacts with HIV-1 IN and protects it from the Lys48-linked polyubiquitination proteasomal pathway. Moreover, Ku70 is able to down-regulate the overall protein polyubiquitination level within the host cells and to specifically deubiquitinate IN through their interaction. Mutagenic studies revealed that the C terminus of IN (residues 230–288) is required for IN binding to the N-terminal part of Ku70 (Ku70(1–430)), and their interaction is independent of Ku70/80 heterodimerization. Finally, knockdown of Ku70 expression in both virus-producing and target CD4+ T cells significantly disrupted HIV-1 replication and rendered two-long terminal repeat circles and integration undetectable, indicating that Ku70 is required for both the early and the late stages of the HIV-1 life cycle. Interestingly, Ku70 was incorporated into the progeny virus in an IN-dependent way. We proposed that Ku70 may interact with IN during viral assembly and accompany HIV-1 IN upon entry into the new target cells, acting to 1) protect IN from the host defense system and 2) assist IN integration activity. Overall, this report provides another example of how HIV-1 hijacks host cellular machinery to protect the virus itself and to facilitate its replication.
Journal of Virology | 2015
Kallesh Danappa Jayappa; Zhujun Ao; Xiaoxia Wang; Andrew J. Mouland; Sudhanshu Shekhar; Xi Yang; Xiaojian Yao
ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral replication steps.
Journal of Molecular Biology | 2011
Kallesh Danappa Jayappa; Zhujun Ao; Ming Yang; Junzhi Wang; Xiaojian Yao
The viral cDNA nuclear import is an important requirement for human immunodeficiency virus type 1 (HIV-1) replication in dividing and nondividing cells. Our recent study identified a specific interaction of importin α3 (Impα3) with HIV-1 integrase (IN) and its involvement in viral cDNA nuclear import. In this study, we have performed a more detailed investigation on the molecular mechanism of how HIV-1 IN interacts with Impα3. Our results revealed a reduced interaction between the two IN mutants INKK215,9AA (IN215,9) and INRK263,4AA (IN263,4) with Impα3, while an IN double mutant, IN215,9/263,4, was severely impaired for its Impα3-binding ability, even though it was still found interacting with other cofactors, IN interactor I and Transportin3. Immunostaining and fractionation analysis have shown that YFP-IN215,9/263,4 failed to localize in the nucleus of transfected cells. Also, we found that both major and minor nuclear localization signal binding grooves of Impα3 are involved in interaction with IN. All of these results suggest a cargo protein-import receptor type of interaction. Finally, the effect of IN215,9/263,4 mutations on HIV-1 replication was evaluated, and real-time quantitative PCR analysis showed that, while mutant virus (v215,9/263,4) had a slightly lowered total viral DNA, the 2-long-terminal-repeat DNA, a marker for nuclear import, was greatly reduced during v215,9/263,4 infection in both dividing and nondividing cells. Also, by cell fractionation assay, we found that a significant proportion of viral cDNA was still retained in cytoplasmic fraction of v215,9/263,4-infected cells. Overall, our study provides strong evidence that (211)KELQKQITK and (262)RRKAK regions of IN C-terminal domain are required for Impα3 interaction and HIV-1 cDNA nuclear import.
Journal of Biological Chemistry | 2012
Zhujun Ao; Kallesh Danappa Jayappa; Binchen Wang; Yingfeng Zheng; Xiaoxia Wang; Jinyu Peng; Xiaojian Yao
Background: HIV-1 integration is promoted by viral integrase and its cellular cofactors. Results: Nucleoporin 62 interacts with HIV-1 integrase in chromatin, and shRNA knockdown of nucleoporin 62 was able to impair integrase chromatin association and viral replication. Conclusion: Interaction of nucleoporin 62 and HIV-1 integrase contributes to viral DNA integration. Significance: A new nucleoporin was identified as an integrase-binding cofactor required for HIV-1 integration and replication. HIV-1 integration is promoted by viral integrase (IN) and its cellular cofactors. The lens epithelium-derived growth factor (LEDGF/p75), an IN interacting cellular cofactor, has been shown to play an important role in HIV-1 chromatin targeting and integration. However, whether other cellular cofactors are also involved in viral replication steps is still elusive. Here, we show that nucleoporin 62 (Nup62) is a chromatin-bound protein and can specifically interact with HIV-1 IN in both soluble nuclear extract and chromatin-bound fractions. The knockdown of Nup62 by shRNA reduced the association of IN with host chromatin and significantly impaired viral integration and replication in HIV-1-susceptible cells. Furthermore, the expression of the IN-binding region of Nup62 in CD4+ T cells significantly inhibited HIV-1 infection. Taken together, these results indicate that the cellular Nup62 is specifically recruited by HIV-1 IN and contribute to an efficient viral DNA integration.
Virology Journal | 2010
Yingfeng Zheng; Zhujun Ao; Kallesh Danappa Jayappa; Xiaojian Yao
BackgroundDuring the early stage of HIV-1 replication, integrase (IN) plays important roles at several steps, including reverse transcription, viral DNA nuclear import, targeting viral DNA to host chromatin and integration. Previous studies have demonstrated that HIV-1 IN interacts with a cellular Lens epithelium-derived growth factor (LEDGF/p75) and that this viral/cellular interaction plays an important role for tethering HIV-1 preintegration complexes (PICs) to transcriptionally active units of host chromatin. Meanwhile, other studies have revealed that the efficient knockdown and/or knockout of LEDGF/p75 could not abolish HIV infection, suggesting a LEDGF/p75-independent action of IN for viral DNA chromatin targeting and integration, even though the underlying mechanism(s) is not fully understood.ResultsIn this study, we performed site-directed mutagenic analysis at the C-terminal region of the IN catalytic core domain responsible for IN/chromatin binding and IN/LEDGF/p75 interaction. The results showed that the IN mutations H171A, L172A and EH170,1AA, located in the loop region 170EHLK173 between the α4 and α5 helices of IN, severely impaired the interaction with LEDGF/p75 but were still able to bind chromatin. In addition, our combined knockdown approach for LEDGF/p75 also failed to dissociate IN from chromatin. This suggests that IN has a LEDGF/p75-independent determinant for host chromatin binding. Furthermore, a single-round HIV-1 replication assay showed that the viruses harboring IN mutants capable of LEDGF/p75-independent chromatin binding still sustained a low level of infection, while the chromatin-binding defective mutant was non-infectious.ConclusionsAll of these data indicate that, even though the presence of LEDGF/p75 is important for a productive HIV-1 replication, IN has the ability to bind chromatin in a LEDGF/p75-independent manner and sustains a low level of HIV-1 infection. Hence, it is interesting to define the mechanism(s) underlying IN-mediated LEDGF/p75-independent chromatin targeting, and further studies in this regard will help for a better understanding of the molecular mechanism of chromatin targeting by IN during HIV-1 infection.
Human Gene Therapy | 2011
Zhujun Ao; Xiaoxia Wang; Alexander Bello; Kallesh Danappa Jayappa; Zhe Yu; Keith R. Fowke; Xinying He; Xi Chen; Junhua Li; Gary P. Kobinger; Xiaojian Yao
In this study, we characterized the anti-HIV activities of various R88-APOBEC3G (R88-A3G) mutant fusion proteins in which each A3G mutant was fused with a virus-targeting polypeptide (R14-88, hereafter named R88) derived from HIV-1 Vpr. Our results show that the introduction of the deaminase-defective mutant E259Q into R88-A3G did not affect the virion incorporation of this mutant but blocked the proteins ability to inhibit HIV-1 infection. Our data also reveal that the antiviral effect of A3GY124A, a previously described A3G virus-packaging mutant, was completely rescued when the mutant was fused with R88. In an attempt to identify the most potent R88-A3G fusion proteins against HIV-1 infection, we introduced two Vif-binding mutants (D128K and P129A) into the R88-A3G fusion protein and showed that both R88-A3GD128K and R88-A3GP129A possessed very potent anti-HIV activity. When R88-A3GP129A was transduced into CD4(+) C8166 T cells, HIV-1 infection was completely abolished for at least 24 days. In an attempt to further test the anti-HIV effect of this mutant in primary human HIV susceptible cells, we introduced R88-A3GP129A into human peripheral blood mononuclear cells (PBMCs) and macrophages with a recombinant adeno-associated virus (rAAV2/5) vector. The results demonstrate that a significant inhibition of HIV-1 infection was observed in the transduced PBMCs and macrophages. These results provide evidence for the feasibility of an R88-A3G-based anti-HIV strategy. The further optimization of this system will contribute to the development of new anti-HIV gene therapy approaches.
Antimicrobial Agents and Chemotherapy | 2013
Liyu Chen; Zhujun Ao; Kallesh Danappa Jayappa; Gary P. Kobinger; Shuiping Liu; Guojun Wu; Mark A. Wainberg; Xiaojian Yao
ABSTRACT In the absence of an effective vaccine against HIV-1 infection, anti-HIV-1 strategies play a major role in disease control. However, the rapid emergence of drug resistance against all currently used anti-HIV-1 molecules necessitates the development of new antiviral molecules and/or strategies against HIV-1 infection. In this study, we have identified a benzamide derivative named AH0109 that exhibits potent anti-HIV-1 activity at an 50% effective concentration of 0.7 μM in HIV-1-susceptible CD4+ C8166 T cells. Mechanistic analysis revealed that AH0109 significantly inhibits both HIV-1 reverse transcription and viral cDNA nuclear import. Furthermore, our infection experiments indicated that AH0109 is capable of disrupting the replication of HIV-1 strains that are resistant to the routinely used anti-HIV-1 drugs zidovudine, lamivudine, nevirapine, and raltegravir. Together, these findings provide evidence for a newly identified antiviral molecule that can potentially be developed as an anti-HIV-1 agent.
Molecular therapy. Nucleic acids | 2014
Xiaoxia Wang; Zhujun Ao; Kallesh Danappa Jayappa; Bei Shi; Gary P. Kobinger; Xiaojian Yao
Human immunodeficiency virus type 1 (HIV-1) drug resistance and the latent reservoir are the two major obstacles to effectively controlling and curing HIV-1 infection. Therefore, it is critical to develop therapeutic strategies specifically targeting these two obstacles. Recently, we described a novel anti-HIV approach based on a modified human intrinsic restriction factor, R88-APOBEC3G (R88-A3G). In this study, we further characterized the antiviral potential of R88-A3GD128K (R88-A3Gm) against drug-resistant strains of HIV-1 and viruses produced from latently infected cells. We delivered R88-A3Gm into target cells using a doxycycline (Dox)-inducible lentiviral vector and demonstrated that its expression and antiviral activity were highly regulated by Dox. In the presence of Dox, R88-A3Gm–transduced T cells were resistant to infection caused by wild-type and various drug-resistant strains of HIV-1. Moreover, when the R88-A3Gm–expressing vector was transduced into the HIV-1 latently infected ACH-2 cell line or human CD4+ T cells, on activation by phorbol-12-myristate-13-acetate or phytohemaglutinin, R88-A3Gm was able to curtail the replication of progeny viruses. Altogether, these data clearly indicate that R88-A3Gm is a highly potent HIV-1 inhibitor, and R88-A3Gm–based anti-HIV gene therapy is capable of targeting both active and latent HIV-1–infected cells to prevent subsequent viral replication and dissemination.
International journal of biochemistry and molecular biology | 2012
Kallesh Danappa Jayappa; Zhujun Ao; Xiaojian Yao