Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kam D. Dahlquist is active.

Publication


Featured researches published by Kam D. Dahlquist.


Genome Biology | 2003

MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data

Scott W. Doniger; Nathan Salomonis; Kam D. Dahlquist; Karen Vranizan; Steven C. Lawlor; Bruce R. Conklin

MAPPFinder is a tool that creates a global gene-expression profile across all areas of biology by integrating the annotations of the Gene Ontology (GO) Project with the free software package GenMAPP http://www.GenMAPP.org. The results are displayed in a searchable browser, allowing the user to rapidly identify GO terms with over-represented numbers of gene-expression changes. Clicking on GO terms generates GenMAPP graphical files where gene relationships can be explored, annotated, and files can be freely exchanged.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


BMC Bioinformatics | 2007

GenMAPP 2: new features and resources for pathway analysis

Nathan Salomonis; Kristina Hanspers; Alexander C. Zambon; Karen Vranizan; Steven C. Lawlor; Kam D. Dahlquist; Scott W. Doniger; Joshua M. Stuart; Bruce R. Conklin; Alexander R. Pico

BackgroundMicroarray technologies have evolved rapidly, enabling biologists to quantify genome-wide levels of gene expression, alternative splicing, and sequence variations for a variety of species. Analyzing and displaying these data present a significant challenge. Pathway-based approaches for analyzing microarray data have proven useful for presenting data and for generating testable hypotheses.ResultsTo address the growing needs of the microarray community we have released version 2 of Gene Map Annotator and Pathway Profiler (GenMAPP), a new GenMAPP database schema, and integrated resources for pathway analysis. We have redesigned the GenMAPP database to support multiple gene annotations and species as well as custom species database creation for a potentially unlimited number of species. We have expanded our pathway resources by utilizing homology information to translate pathway content between species and extending existing pathways with data derived from conserved protein interactions and coexpression. We have implemented a new mode of data visualization to support analysis of complex data, including time-course, single nucleotide polymorphism (SNP), and splicing. GenMAPP version 2 also offers innovative ways to display and share data by incorporating HTML export of analyses for entire sets of pathways as organized web pages.ConclusionGenMAPP version 2 provides a means to rapidly interrogate complex experimental data for pathway-level changes in a diverse range of organisms.


Journal of Computational Biology | 2003

Regression approaches for microarray data analysis.

Mark R. Segal; Kam D. Dahlquist; Bruce R. Conklin

A variety of new procedures have been devised to handle the two-sample comparison (e.g., tumor versus normal tissue) of gene expression values as measured with microarrays. Such new methods are required in part because of some defining characteristics of microarray-based studies: (i) the very large number of genes contributing expression measures which far exceeds the number of samples (observations) available and (ii) the fact that by virtue of pathway/network relationships, the gene expression measures tend to be highly correlated. These concerns are exacerbated in the regression setting, where the objective is to relate gene expression, simultaneously for multiple genes, to some external outcome or phenotype. Correspondingly, several methods have been recently proposed for addressing these issues. We briefly critique some of these methods prior to a detailed evaluation of gene harvesting. This reveals that gene harvesting, without additional constraints, can yield artifactual solutions. Results obtained employing such constraints motivate the use of regularized regression procedures such as the lasso, least angle regression, and support vector machines. Model selection and solution multiplicity issues are also discussed. The methods are evaluated using a microarray-based study of cardiomyopathy in transgenic mice.


Nature Biotechnology | 2012

The BioPAX community standard for pathway data sharing (Nature Biotechnology (2010) 28, (935-942))

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

BioPAX (Biological Pathway Exchange) is a standard language to represent biological pathways at the molecular and cellular level. Its major use is to facilitate the exchange of pathway data (http://www.biopax.org). Pathway data captures our understanding of biological processes, but its rapid growth necessitates development of databases and computational tools to aid interpretation. However, the current fragmentation of pathway information across many databases with incompatible formats presents barriers to its effective use. BioPAX solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. BioPAX was created through a community process. Through BioPAX, millions of interactions organized into thousands of pathways across many organisms, from a growing number of sources, are available. Thus, large amounts of pathway data are available in a computable form to support visualization, analysis and biological discovery.


PeerJ | 2016

GRNsight: a web application and service for visualizing models of small- to medium-scale gene regulatory networks

Kam D. Dahlquist; John David N. Dionisio; Ben G. Fitzpatrick; Nicole A. Anguiano; Anindita Varshneya; Britain J. Southwick; Mihir Samdarshi

GRNsight is a web application and service for visualizing models of gene regulatory networks (GRNs). A gene regulatory network (GRN) consists of genes, transcription factors, and the regulatory connections between them which govern the level of expression of mRNA and protein from genes. The original motivation came from our efforts to perform parameter estimation and forward simulation of the dynamics of a differential equations model of a small GRN with 21 nodes and 31 edges. We wanted a quick and easy way to visualize the weight parameters from the model which represent the direction and magnitude of the influence of a transcription factor on its target gene, so we created GRNsight. GRNsight automatically lays out either an unweighted or weighted network graph based on an Excel spreadsheet containing an adjacency matrix where regulators are named in the columns and target genes in the rows, a Simple Interaction Format (SIF) text file, or a GraphML XML file. When a user uploads an input file specifying an unweighted network, GRNsight automatically lays out the graph using black lines and pointed arrowheads. For a weighted network, GRNsight uses pointed and blunt arrowheads, and colors the edges and adjusts their thicknesses based on the sign (positive for activation or negative for repression) and magnitude of the weight parameter. GRNsight is written in JavaScript, with diagrams facilitated by D3.js, a data visualization library. Node.js and the Express framework handle server-side functions. GRNsight’s diagrams are based on D3.js’s force graph layout algorithm, which was then extensively customized to support the specific needs of GRNs. Nodes are rectangular and support gene labels of up to 12 characters. The edges are arcs, which become straight lines when the nodes are close together. Self-regulatory edges are indicated by a loop. When a user mouses over an edge, the numerical value of the weight parameter is displayed. Visualizations can be modified by sliders that adjust the force graph layout parameters and through manual node dragging. GRNsight is best-suited for visualizing networks of fewer than 35 nodes and 70 edges, although it accepts networks of up to 75 nodes or 150 edges. GRNsight has general applicability for displaying any small, unweighted or weighted network with directed edges for systems biology or other application domains. GRNsight serves as an example of following and teaching best practices for scientific computing and complying with FAIR principles, using an open and test-driven development model How to cite this article Dahlquist et al. (2016), GRNsight: a web application and service for visualizing models of smallto medium-scale gene regulatory networks. PeerJ Comput. Sci. 2:e85; DOI 10.7717/peerj-cs.85 Submitted 21 May 2016 Accepted 20 August 2016 Published 12 September 2016 Corresponding author Kam D. Dahlquist, [email protected] Academic editor Shawn Gomez Additional Information and Declarations can be found on page 20 DOI 10.7717/peerj-cs.85 Copyright 2016 Dahlquist et al. Distributed under Creative Commons CC-BY 4.0 with rigorous documentation of requirements and issues on GitHub. An exhaustive unit testing framework using Mocha and the Chai assertion library consists of around 160 automated unit tests that examine nearly 530 test files to ensure that the program is running as expected. The GRNsight application (http://dondi.github.io/ GRNsight/) and code (https://github.com/dondi/GRNsight) are available under the open source BSD license. Subjects Bioinformatics, Graphics, Software Engineering


Nature Genetics | 2002

GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways

Kam D. Dahlquist; Nathan Salomonis; Karen Vranizan; Steven C. Lawlor; Bruce R. Conklin


technical symposium on computer science education | 2008

Improving the computer science in bioinformatics through open source pedagogy

John David N. Dionisio; Kam D. Dahlquist


Archive | 2005

BioPAX - Biological Pathways Exchange Language Level 2, Version 1.0 Documentation

Gary D. Bader; Eric Brauner; Michael P. Cary; Kam D. Dahlquist; Emek Demir; Peter D'Eustachio; Ken Fukuda; Frank Gibbons; Marc Gillespie; Robert N. Goldberg; Chris Hogue; Michael Hucka; Geeta Joshi-Tope; David Kane; Peter D. Karp; Teri Klein; Christian Lemer; Joanne S. Luciano; Debbie Marks; Natalia Maltsev; Elizabeth Marland; Eric Neumann; Suzanne M. Paley; Jonathan Rees; Aviv Regev; Alan Ruttenberg; Andrey Rzhetsky; Chris Sander; Imran Shah; Andrea Splendiani


Nature Biotechnology | 2010

Corrigendum: The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Collaboration


Dive into the Kam D. Dahlquist's collaboration.

Top Co-Authors

Avatar

Ben G. Fitzpatrick

Loyola Marymount University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emek Demir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Geeta Joshi-Tope

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Imran Shah

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Joanne S. Luciano

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Fukuda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge