Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kang-Cheng Zheng is active.

Publication


Featured researches published by Kang-Cheng Zheng.


Biophysical Chemistry | 2008

Tricationic pyridium porphyrins appending different peripheral substituents: Experimental and DFT studies on their interactions with DNA

Ping Zhao; Lian-Cai Xu; Jin-Wang Huang; Kang-Cheng Zheng; Bo Fu; Han-Cheng Yu; Liang-Nian Ji

Four tricationic pyridium porphyrins appending hydroxyphenyl, methoxyphenyl, propionoxyphenyl or carboxyphenyl group at meso-20-position of porphyrin core have been synthesized and their abilities to bind and cleave DNA have been investigated. Using a combination of absorption, fluorescence, circular dichroism (CD) spectra, thermal DNA denaturation as well as viscosity measurements, their binding modes and intrinsic binding constants (K(b)) to calf DNA (CT DNA) were comparatively studied and also compared with those of 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP). The results suggest that the K(b) values of these porphyrins are greatly influenced by the number of positive charges and steric hindrance. Theoretical calculations applying the density functional theory (DFT) have been carried out and explain their DNA-binding properties reasonably. The efficiency of DNA photocleavage by these porphyrins shows high dependence on the values of K(b).


Biophysical Chemistry | 2008

DNA binding and photocleavage properties of a novel cationic porphyrin-anthraquinone hybrid.

Ping Zhao; Lian-Cai Xu; Jin-Wang Huang; Kang-Cheng Zheng; Jie Liu; Han-Cheng Yu; Liang-Nian Ji

A novel cationic porphyrin-anthraquinone (Por-AQ) hybrid has been synthesized and characterized. Using the combination of absorption titration, fluorescence spectra, circular dichroism (CD) as well as viscosity measurements, the binding properties of the hybrid to calf thymus (CT) DNA have been investigated compared with its parent porphyrin. The experimental results show that at low [Por]/[DNA] ratios, the parent porphyrin binds to DNA in an intercalative mode while the hybrid binds in a combined mode of outside binding (for porphyrin moiety) and partial intercalation (for anthraquinone). Ethidium bromide (EB) competition experiment determined the binding affinity constants (K(app)) of the compounds for CT DNA. Theoretical calculational results applying the density functional theory (DFT) can explain the different DNA binding behaviors reasonably. (1)O(2) was suggested to be the reactive species responsible for the DNA photocleavage of porphyrin moieties in both two compounds. The wavelength-depending cleavage activities of the compounds were also investigated.


European Journal of Medicinal Chemistry | 2009

CoMFA and docking studies of 2-phenylindole derivatives with anticancer activity

Si Yan Liao; Li Qian; Ti Fang Miao; Hai Liang Lu; Kang-Cheng Zheng

Three-dimensional (3D) quantitative structure-activity relationship (QSAR) and docking studies of 43 tubulin inhibitors, 2-phenylindole derivatives with anticancer activity against human breast cancer cell line MDA-MB 231, have been carried out. The established 3D-QSAR model from the comparative molecular field analysis (CoMFA) in training set shows not only significant statistical quality, but also satisfying predictive ability, with high correlation coefficient value (R(2)=0.910) and cross-validation coefficient value (q(2)=0.705). Moreover, the predictive ability of the CoMFA model was further confirmed by a test set, giving the predictive correlation coefficient (R(2)(pred)) of 0.688. Based on the CoMFA contour maps and docking analyses, some key structural factors responsible for anticancer activity of this series of compounds were revealed as follows: the substituent R(1) should have higher electronegativity; the substituent R(2) should be linear alkyl with four or five carbon atoms in length; and the substituent R(3) should be selected to OCH(3)-kind group whereas should not be selected to CF(3)-kind group. Meanwhile, the interaction information between target and ligand was presented in detail. Such results can offer some useful theoretical references for understanding the action mechanism, designing more potent inhibitors and predicting their activities prior to synthesis.


Dalton Transactions | 2008

A combined computational and experimental study on DNA-photocleavage of Ru(II) polypyridyl complexes [Ru(bpy)2(L)]2+ (L = pip, o-mopip and p-mopip)

Lian-Cai Xu; Shuo Shi; Jun Li; Si-Yan Liao; Kang-Cheng Zheng; Liang-Nian Ji

A combined computational and experimental study on DNA-photocleavage by Ru(II) polypyridyl complexes [Ru(bpy)2(L)]2+ 1-3 (bpy = 2,2-bipyridine; L: pip = 2-phenylimidazo[4,5-f]1,10-phenanthroline, o-mopip = 2-(2-methoxyphenyl)imidazo[4,5-f]1,10-phenanthroline and p-mopip = 2-(4-methoxyphenyl)imidazo[4,5-f]1,10-phenanthroline) has been carried out. The DNA-photocleavage behavior of these complexes was comparably measured by the gel electrophoresis experiments. The experimental results show that they can induce considerable DNA-photocleavage, and have different DNA-photocleavage efficiencies (phi) following the order phi (1) < phi (2) < phi (3). In order to understand their DNA-photocleavage mechanism and trend, the theoretical studies on the geometric and electronic structures of these complexes in the ground state (S0), the first singlet excited state (S1) and triplet excited states (T1), have been carried out using the density functional theory (DFT/TD-DFT), Hartree-Fock (HF) and configuration interaction singles (CIS) methods. In particular, the reduction potentials (E*red) of the excited complexes in aqueous solution, which seem to be closely responsible for the DNA-photocleavage behavior, were calculated to be 0.966 V (vs. SCE) for complex , 1.024 V (vs. SCE) for complex and 1.030 V (vs. SCE) for complex , respectively. Such computational results show that the reduction potentials of the excited complexes reach the theoretical range for oxidizing some DNA-bases, and follow the order E*red (1) < E*red (2) < E*red (3). Therefore, here, in addition to the general theoretical explanation of their DNA-photocleavage mechanism according to our recent report, a further explanation on the trend of their DNA-photocleavage efficiencies, i.e., phi (1) < phi (2) < phi (3), was reasonably carried out, on the basis of the calculated electrochemical properties in the excited states as well as general photochemical insights.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2008

Experimental and DFT studies on DNA binding and photocleavage of two cationic porphyrins. Effects of the introduction of a carboxyphenyl into pyridinium porphyrin.

Ping Zhao; Lian-Cai Xu; Jin-Wang Huang; Jie Liu; Han-Cheng Yu; Kang-Cheng Zheng; Liang-Nian Ji

The DNA-binding affinities and DNA photocleavage abilities of cationic porphyrin, 5-(4-carboxyphenyl)-10,15,20-tris(4-methylpyridiniumyl)porphyrin (CTMPyP), and its reference compound meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (H2TMPyP) have been investigated. The DNA-binding behaviors of the two compounds in NaH2PO4 buffer were compared systematically by using absorption, fluorescence and circular dichroism (CD) spectra, thermal denaturation as well as viscosity measurements. The experimental results show that CTMPyP binds to DNA in an outside binding mode, while H2TMPyP in an intercalative mode. Photocleavage experiments reveal that both two compounds employ 1O2-mediated mechanism in cleaving DNA and H2TMPyP can cleave DNA more efficiently than CTMPyP. Theoretical calculations were carried out with the density functional theory (DFT), and the calculated results indicate that the character and energies of some frontier orbitals of CTMPyP are quite different from those of H2TMPyP. These theoretical results can be used to explain their different DNA-binding modes and affinities to a certain extent.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2010

Binding conformations and QSAR of CA-4 analogs as tubulin inhibitors

Si Yan Liao; Jin Can Chen; Ti Fang Miao; Yong Shen; Kang-Cheng Zheng

A theoretical study on the binding conformations and the quantitative structure–activity relationship (QSAR) of combretastatin A4 (CA-4) analogs as inhibitors toward tubulin has been carried out using docking analysis and comparative molecular field analysis (CoMFA). The appropriate binding orientations and conformations of these compounds interacting with tubulin were revealed by the docking study; and a 3D-QSAR model showing significant statistical quality and satisfactory predictive ability was established, in which the correlation coefficient (R2) and cross-validation coefficient (q2) were 0.955 and 0.66, respectively. The same model was further applied to predict the pIC50 values for 16 congeneric compounds as external test set, and the predictive correlation coefficient R2pred reached 0.883. Other tests on additional validations further confirmed the satisfactory predictive power of the model. In this work, it was very interesting to find that the 3D topology structure of the active site of tubulin from the docking analysis was in good agreement with the 3D-QSAR model from CoMFA for this series of compounds. Some key structural factors of the compounds responsible for cytotoxicity were reasonably presented. These theoretical results can offer useful references for understanding the action mechanism and directing the molecular design of this kind of inhibitor with improved activity.


Journal of Theoretical and Computational Chemistry | 2007

QSAR AND MOLECULAR DESIGN OF BENZO[B]ACRONYCINE DERIVATIVES AS ANTITUMOR AGENTS

Wen Juan Wu; Jin Can Chen; Li Qian; Kang-Cheng Zheng

Quantitative structure-activity relationship (QSAR) studies of a series of benzo[b]acronycine derivatives as a novel class of antitumor agents have been carried out using the density functional theory (DFT), molecular mechanics (MM+) and statistical methods. Some calculated parameters of geometric structures, electronic structures and molecular properties of the compounds were adopted as generalized descriptors (variables). Via a stepwise regression analysis, some main independent factors affecting the activities of the compounds were selected out, and then the quantitative structure-activity relationship (QSAR) equation was established. The results suggest that the energy difference (Δ eL-H) between the lowest unoccupied molecular orbital and the highest occupied molecular orbital, the net charges of the nitrogen atom N11 and the first atom of the substituent R2, and the hydrophobic parameter (log P1) of the substituent R1 are the main independent factors contributing to the antitumor activities of the compounds. The fitting correlation coefficient (r2) and the cross-validation coefficient (q2) for the model established by this study are 0.865 and 0.721, respectively, showing this model with a good predictability. The QSAR equation can be used to estimate unknown antitumor activity of this kind of compound, and thus design new compounds with high antitumor activities. Here, based on this QASR study, 4 new compounds with predicted high antitumor activities have been theoretically designed and they are expecting experimental verification.


Journal of Theoretical and Computational Chemistry | 2011

A DFT STUDY ON THE HYDROLYSIS MECHANISM OF THE NAMI-A-TYPE ANTITUMOR COMPLEX (HL)[trans-RUCl4L(dmso-S)](L=4-amino-1,2,4-triazole)

Lan Mei Chen; Jin Can Chen; Hui Luo; Si Yan Liao; Kang-Cheng Zheng

The hydrolysis process of Ru(III) complex (HL)[trans-RuCl4L(dmso-S)] (L=4-amino-1,2,4-triazole) (1), a potential antitumor complex similar to the well-known antitumor agent (ImH)[trans-RuCl4(dmso-S)(Im)](NAMI-A), was investigated using density functional theory (DFT) with the conductor-like polarizable continuum model (CPCM). The structural characteristics and the detailed energy profiles for the hydrolysis processes of this complex were obtained. For the first hydrolysis step, complex 1 with 4-amino-1,2,4-triazole ligand shows much faster aquation than NAMI-A with imidazole ligand and complex 2 with 4H-1,2,4-triazole ligand, and such a calculated result is in good agreement with the experimental one. For the second hydrolysis step, the formation of cis-diaqua products is found to be thermodynamically preferred over the trans isomers. In addition, on the basis of the analysis of electronic characteristics of species in the hydrolysis process, the trend in abilities (A) of hydrolysis products attacked nucleophilicly by pertinent biomolecules is revealed. These theoretical results will help in understanding the action mechanism of this potential Ru(III) drug with pertinent biomolecular targets.


Biophysical Chemistry | 2009

Electronic structures, DNA-binding and spectral properties of Co(III) complexes [Co(bpy)2(L)]3+ (L=pip, odhip, hnoip)

Ti-Fang Miao; Si-Yan Liao; Li Qian; Kang-Cheng Zheng; Liang-Nian Ji

Studies on the electronic structures and trend in DNA-binding affinities of a series of Co(III) complexes have been carried out, using the density functional theory (DFT) at the B3LYP/LanL2DZ level. The optimized geometric structures of these Co(III) complexes in aqueous solution are more close to experimental data than those in vacuo. The electronic structures of these Co(III) complexes were analyzed on the basis of their geometric structures optimized in aqueous solution, and the trend in the DNA-binding constants (K(b)) was reasonably explained. In addition, the electronic absorption spectra of these complexes were calculated and simulated in aqueous solution using the time dependent DFT (TDDFT) at the B3LYP/LanL2DZ level. The calculated absorption spectra of these Co(III) complexes in aqueous solution are in satisfying agreement with experimental results, and the properties of experimental absorption bands have been theoretically explained in detail. Meanwhile, in order to explore the solvent effect on the absorption spectra of these Co(III) complexes, their absorption spectra in vacuo were also calculated, and the results show that the calculated absorption spectra of Co(III) complexes are greatly influenced by the solvent effect.


Journal of Molecular Modeling | 2014

Exploration of the binding mode between (−)-zampanolide and tubulin using docking and molecular dynamics simulation

Si-Yan Liao; Guang-Quan Mo; Jin-Can Chen; Kang-Cheng Zheng

The binding mode of (−)-zampanolide (ZMP) to tubulin was investigated using docking, molecular dynamics (MD) simulation, and binding free-energy calculations. The docking studies validated the experimental results indicating that the paclitaxel site is the binding site for (−)-ZMP. The 18 ns MD simulation shows the docking mode has changed a lot, whereas it offers more reliable binding data. MM-PBSA binding free-energy calculations further confirmed the results of the MD simulation. The study revealed that hydrophobic interactions play an important role in stabilizing the binding, and the strong hydrogen bond formed with Asp224 enhances the affinity for tubulin. Meanwhile, the results support the assumption that (−)-ZMP can be attacked by His227, leading to a nucleophilic reaction and covalent binding. These theoretical results lead to a greater understanding of the mechanism of action of binding to tubulin, and will therefore aid the design of new compounds with higher affinities for tubulin.

Collaboration


Dive into the Kang-Cheng Zheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jincan Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Li Qian

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Si-Yan Liao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lian-Cai Xu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Shen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jun Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Si Yan Liao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge