Karaba N. Nataraja
University of Agricultural Sciences, Dharwad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karaba N. Nataraja.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Aarati Karaba; Shital Dixit; Raffaella Greco; Asaph Aharoni; Kurniawan Rudi Trijatmiko; Nayelli Marsch-Martínez; Arjun Krishnan; Karaba N. Nataraja; M. Udayakumar; Andy Pereira
Freshwater is a limited and dwindling global resource; therefore, efficient water use is required for food crops that have high water demands, such as rice, or for the production of sustainable energy biomass. We show here that expression of the Arabidopsis HARDY (HRD) gene in rice improves water use efficiency, the ratio of biomass produced to the water used, by enhancing photosynthetic assimilation and reducing transpiration. These drought-tolerant, low-water-consuming rice plants exhibit increased shoot biomass under well irrigated conditions and an adaptive increase in root biomass under drought stress. The HRD gene, an AP2/ERF-like transcription factor, identified by a gain-of-function Arabidopsis mutant hrd-D having roots with enhanced strength, branching, and cortical cells, exhibits drought resistance and salt tolerance, accompanied by an enhancement in the expression of abiotic stress associated genes. HRD overexpression in Arabidopsis produces thicker leaves with more chloroplast-bearing mesophyll cells, and in rice, there is an increase in leaf biomass and bundle sheath cells that probably contributes to the enhanced photosynthesis assimilation and efficiency. The results exemplify application of a gene identified from the model plant Arabidopsis for the improvement of water use efficiency coincident with drought resistance in the crop plant rice.
Plant Biotechnology Journal | 2009
Hitesh Kathuria; Jitender Giri; Karaba N. Nataraja; Norio Murata; M. Udayakumar; Akhilesh K. Tyagi
Rice (Oryza sativa L.), a non-accumulator of glycinebetaine (GB), is highly susceptible to abiotic stress. Transgenic rice with chloroplast-targeted choline oxidase encoded by the codA gene from Arthrobacter globiformis has been evaluated for inheritance of transgene up to R5 generation and water-stress tolerance. During seedling, vegetative and reproductive stages, transgenic plants could maintain higher activity of photosystem II and they show better physiological performance, for example, enhanced detoxification of reactive oxygen species compared to wild-type plants under water-stress. Survival rate and agronomic performance of transgenic plants is also better than wild-type following prolonged water-stress. Choline oxidase converts choline into GB and H2O2 in a single step. It is possible that H2O2/GB might activate stress response pathways and prepare transgenic plants to mitigate stress. To check this possibility, microarray-based transcriptome analysis of transgenic rice has been done. It unravelled altered expression of many genes involved in stress responses, signal transduction, gene regulation, hormone signalling and cellular metabolism. Overall, 165 genes show more than two-fold up-regulation at P-value < 0.01 in transgenic rice. Out of these, at least 50 genes are known to be involved in plant stress response. Exogenous application of H2O2 or GB to wild-type plants also induces such genes. Our data show that metabolic engineering for GB is a promising strategy for introducing stress tolerance in crop plants and which could be imparted, in part, by H2O2- and/or GB-induced stress response genes.
Transgenic Research | 2013
K. C. Babitha; S. V. Ramu; V. Pruthvi; Patil Mahesh; Karaba N. Nataraja; M. Udayakumar
Stress adaptation in plants involves altered expression of many genes through complex signaling pathways. To achieve the optimum expression of downstream functional genes, we expressed AtbHLH17 (AtAIB) and AtWRKY28 TFs which are known to be upregulated under drought and oxidative stress, respectively in Arabidopsis. Multigene expression cassette with these two TFs and reporter gene GUS was developed using modified gateway cloning strategy. The GUS assay and expression analysis of transgenes in transgenic plants confirmed the integration of multigene cassette. The transgenic lines exhibited enhanced tolerance to NaCl, Mannitol and oxidative stress. Under mannitol stress condition significantly higher root growth was observed in transgenics. Growth under stress and recovery growth was substantially superior in transgenics exposed to gradual long term desiccation stress conditions. We demonstrate the expression of several downstream target genes under various stress conditions. A few genes having either WRKY or bHLH cis elements in their promoter regions showed higher transcript levels than wild type. However, the genes which did not have either of the motifs did not differ in their expression levels in stress conditions compared to wild type plants. Hence co-expressing two or more TFs may result in upregulation of many downstream target genes and substantially improve the stress tolerance of the plants.
PLOS ONE | 2012
Venkategowda Ramegowda; Muthappa Senthil-Kumar; Karaba N. Nataraja; Malireddy K. Reddy; Kirankumar S. Mysore; M. Udayakumar
NAC (NAM, ATAF1-2, and CUC2) proteins constitute one of the largest families of plant-specific transcription factors and have been shown to be involved in diverse plant processes including plant growth, development, and stress-tolerance. In this study, a stress-responsive NAC gene, EcNAC1, was isolated from the subtracted stress cDNA library generated from a drought adapted crop, finger millet, and characterized for its role in stress-tolerance. The expression analysis showed that EcNAC1 was highly induced during water-deficit and salt stress. EcNAC1 shares high amino acid similarity with rice genes that have been phylogenetically classified into stress-related NAC genes. Our results demonstrated that tobacco transgenic plants expressing EcNAC1 exhibit tolerance to various abiotic stresses like simulated osmotic stress, by polyethylene glycol (PEG) and mannitol, and salinity stress. The transgenic plants also showed enhanced tolerance to methyl-viologen (MV) induced oxidative stress. Reduced levels of reactive oxygen species (ROS) and ROS-induced damage were noticed in pot grown transgenic lines under water-deficit and natural high light conditions. Root growth under stress and recovery growth after stress alleviation was more in transgenic plants. Many stress-responsive genes were found to be up-regulated in transgenic lines expressing EcNAC1. Our results suggest that EcNAC1 overexpression confers tolerance against abiotic stress in susceptible species, tobacco.
Phytomedicine | 2013
S. Shweta; J. Hima Bindu; J. Raghu; Hirenallur Kumarappa Suma; B. L. Manjunatha; P. Mohana Kumara; G. Ravikanth; Karaba N. Nataraja; K. N. Ganeshaiah; R. Uma Shaanker
Camptothecine (CPT), a quinoline alkaloid, is a potent inhibitor of eukaryotic topoisomerase I. Because of this activity, several semi-synthetic derivatives of CPT are in clinical use against ovarian and small lung cancers. Together with its derivatives, CPT is the third largest anti-cancer drug in the world market. CPT is produced by several plant species belonging to the Asterid clade. In the recent past, several studies have reported the production of CPT by endophytic fungal associates of some of these plant species. In this paper, we report the production of CPT by endophytic bacteria isolated from Miquelia dentata Bedd. (Icacinaceae). Besides CPT, the bacteria also produced 9-methoxy CPT (9-MeO-CPT), in culture, independent of the host tissue. The chemical nature of CPT and 9-MeO-CPT was determined by LC-MS and ESI-MS/MS analysis, and was shown to be similar to that produced by the host tissue. One of the bacterial isolates examined, showed indications of attenuation of CPT production through sub-culture. This is the first report of production of CPT by endophytic bacteria. The identity of the bacteria was ascertained by Gram staining and 16s rRNA sequencing. We discuss the possible mechanisms that might be involved in the synthesis of CPT by endophytic bacteria.
PLOS ONE | 2015
K. C. Babitha; Ramu S. Vemanna; Karaba N. Nataraja; M. Udayakumar
Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.
PLOS ONE | 2014
Vittal Pruthvi; Rama Narasimhan; Karaba N. Nataraja
Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been demonstrated. Under drought, traits linked to water mining and water conservation, water use efficiency and cellular tolerance (CT) to desiccation are considered to be relevant. In this study, an attempt has been made to improve CT in drought hardy crop, peanut (Arachis hypogaea L., cv. TMV2) by co-expressing stress-responsive transcription factors (TFs), AtDREB2A, AtHB7 and AtABF3, associated with downstream gene expression. Transgenic plants simultaneously expressing these TFs showed increased tolerance to drought, salinity and oxidative stresses compared to wild type, with an increase in total plant biomass. The transgenic plants exhibited improved membrane and chlorophyll stability due to enhanced reactive oxygen species scavenging and osmotic adjustment by proline synthesis under stress. The improvement in stress tolerance in transgenic lines were associated with induced expression of various CT related genes like AhGlutaredoxin, AhAldehyde reductase, AhSerine threonine kinase like protein, AhRbx1, AhProline amino peptidase, AhHSP70, AhDIP and AhLea4. Taken together the results indicate that co-expression of stress responsive TFs can activate multiple CT pathways, and this strategy can be employed to improve abiotic stress tolerance in crop plants.
Plant Physiology and Biochemistry | 2010
H. M. Mamrutha; T. Mogili; K. Jhansi Lakshmi; N. Rama; Dylan K. Kosma; M. Udaya Kumar; Matthew A. Jenks; Karaba N. Nataraja
Mulberry leaves are the sole source of food for silkworms (Bombyx mori), and moisture content of the detached leaves fed to silkworms determines silkworm growth and cocoon yield. Since leaf dehydration in commercial sericulture is a serious problem, development of new methods that minimize post-harvest water loss are greatly needed. In the present study, variability in moisture retention capacity (MRC, measured as leaf relative water content after one to 5 h of air-drying) was examined by screening 290 diverse mulberry accessions and the relationship between MRC and leaf surface (cuticular) wax amount was determined. Leaf MRC varied significantly among accessions, and was found to correlate strongly with leaf wax amount. Scanning electron microscopic analysis indicated that leaves having crystalline surface waxes of increased facet size and density were associated with high MRC accessions. Leaf MRC at 5 h after harvest was not related to other parameters such as specific leaf weight, and stomatal frequency and index. This study suggests that mulberry accessions having elevated leaf surface wax amount and crystal size and density exhibit reduced leaf post-harvest water loss, and could provide the foundation for selective breeding of improved cultivars.
Molecular Biotechnology | 2013
Ramu S. Vemanna; Babitha K. Chandrashekar; H. M. Hanumantha Rao; Shailesh K. Sathyanarayanagupta; K. S. Sarangi; Karaba N. Nataraja; M. Udayakumar
The genome information is offering opportunities to manipulate genes, polygenic characters and multiple traits in plants. Although a number of approaches have been developed to manipulate traits in plants, technical hurdles make the process difficult. Gene cloning vectors that facilitate the fusion, overexpression or down regulation of genes in plant cells are being used with various degree of success. In this study, we modified gateway MultiSite cloning vectors and developed a hybrid cloning strategy which combines advantages of both traditional cloning and gateway recombination cloning. We developed Gateway entry (pGATE) vectors containing attL sites flanking multiple cloning sites and plant expression vector (pKM12GW) with specific recombination sites carrying different plant and bacterial selection markers. We constructed a plant expression vector carrying a reporter gene (GUS), two Bt cry genes in a predetermined pattern by a single round of LR recombination reaction after restriction endonuclease-mediated cloning of target genes into pGATE vectors. All the three transgenes were co-expressed in Arabidopsis as evidenced by gene expression, histochemical assay and insect bioassay. The pGATE vectors can be used as simple cloning vectors as there are rare restriction endonuclease sites inserted in the vector. The modified multisite vector system developed is ideal for stacking genes and pathway engineering in plants.
World Journal of Microbiology & Biotechnology | 2015
M. M. Vasanthakumari; S. S. Jadhav; Naik Sachin; G. Vinod; S. Shweta; B. L. Manjunatha; P. Mohana Kumara; G. Ravikanth; Karaba N. Nataraja; R. Uma Shaanker
Fungal endophytes inhabit living tissues of plants without any apparent symptoms and in many cases are known to produce secondary metabolites similar to those produced by their respective host plants. However on sub-culture, the endophytic fungi gradually attenuate their ability to produce the metabolites. Attenuation has been a major constraint in realizing the potential of endophytic fungi as an alternative source of plant secondary metabolites. In this study, we report attempts to restore camptothecine (CPT) production in attenuated endophytic fungi isolated from CPT producing plants, Nothapodytes nimmoniana and Miquelia dentata when they are passed through their host plant or plants that produce CPT and when treated with a DNA methyl transferase inhibitor. Attenuated endophytic fungi that traversed through their host tissue or plants capable of synthesizing CPT, produced significantly higher CPT compared to the attenuated fungi. Attenuated fungus cultured in the presence of 5-azacytidine, a DNA methyltransferase inhibitor, had an enhanced CPT content compared to untreated attenuated fungus. These results indicate that the attenuation of CPT production in endophytic fungi could in principle be reversed by eliciting some signals from plant tissue, most likely that which prevents the methylation or silencing of the genes responsible for CPT biosynthesis.