Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen A. Collins is active.

Publication


Featured researches published by Karen A. Collins.


The Astrophysical Journal | 2012

KELT-1b: A STRONGLY IRRADIATED, HIGHLY INFLATED, SHORT PERIOD, 27 JUPITER-MASS COMPANION TRANSITING A MID-F STAR

Robert J. Siverd; Thomas G. Beatty; Joshua Pepper; Jason D. Eastman; Karen A. Collins; Allyson Bieryla; David W. Latham; Lars A. Buchhave; Eric L. N. Jensen; Justin R. Crepp; R. A. Street; Keivan G. Stassun; B. Scott Gaudi; Perry L. Berlind; Michael L. Calkins; D. L. DePoy; Gilbert A. Esquerdo; Benjamin J. Fulton; Gábor Fűrész; John C. Geary; Andrew Gould; L. Hebb; John F. Kielkopf; J. L. Marshall; Richard W. Pogge; K. Z. Stanek; Robert P. Stefanik; Andrew Szentgyorgyi; Mark Trueblood; Patricia Trueblood

We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) transit survey. A joint analysis of the spectroscopic, radial velocity, and photometric data indicates that the V = 10.7 primary is a mildly evolved mid-F star with Teff = 6516±49 K, log g = 4.228 +0.014 −0.021, and [Fe/H] = 0.052±0.079, with an inferred mass M∗ = 1.335 ± 0.063 M� and radius R∗ = 1.471 +0.045 −0.035 R� . The companion is a low-mass brown dwarf or a super-massive planet with mass MP = 27.38 ± 0.93 MJup and radius RP = 1.116 +0.038 −0.029 RJup. The companion is on a very short (∼29 hr) period circular orbit, with an ephemeris Tc(BJDTDB) = 2455909.29280 ± 0.00023 and P = 1.217501 ± 0.000018 days. KELT-1b receives a large amount of stellar insolation, resulting in an estimated equilibrium temperature assuming zero albedo and perfect redistribution of Teq = 2423 +3427 K. Comparison with standard evolutionary models suggests that the radius of KELT-1b is likely to be significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1 with a separation of 588 ± 1 mas, which is consistent with an M dwarf if it is at the same distance as the primary. Rossiter–McLaughlin measurements during transit imply a projected spin–orbit alignment angle λ = 2 ± 16 deg, consistent with a zero obliquity for KELT-1. Finally, the v sin I∗ = 56 ± 2k m s −1 of the primary is consistent at ∼2σ with tidal synchronization. Given the extreme parameters of the KELT-1 system, we expect it to provide an important testbed for theories of the emplacement and evolution of short-period companions, as well as theories of tidal dissipation and irradiated brown dwarf atmospheres.


The Astrophysical Journal | 2009

Revealing the Structure of a Pre-Transitional Disk: The Case of the Herbig F Star SAO 206462 (HD 135344B)

C. A. Grady; Glenn Schneider; Michael L. Sitko; Gerard M. Williger; Kenji Hamaguchi; Sean David Brittain; K. E. Ablordeppey; Daniel Apai; L. Beerman; William Joseph Carpenter; Karen A. Collins; Misato Fukagawa; Heidi B. Hammel; Th. Henning; Dean C. Hines; Robin L. Kimes; David K. Lynch; Francois Menard; Roy L. Pearson; Ray W. Russell; M. Silverstone; Paul S. Smith; M. Troutman; David J. Wilner; Bruce E. Woodgate; M. Clampin

SAO 206462 (HD 135344B) has previously been identified as a Herbig F star with a circumstellar disk with a dip in its infrared excess near 10 μm. In combination with a low accretion rate estimated from Br γ ,i t may represent a gapped, but otherwise primordial or “pre-transitional” disk. We test this hypothesis with Hubble Space Telescope coronagraphic imagery, FUV spectroscopy and imagery and archival X-ray data, and spectral energy distribution (SED) modeling constrained by the observed system inclination, disk outer radius, and outer disk radial surface brightness (SB) profile using the Whitney Monte Carlo Radiative Transfer Code. The essentially face-on (i 20 ◦ ) disk is detected in scattered light from 0. �� 4t o 1. �� 15 (56–160 AU), with a steep (r −9.6 ) radial SB profile from 0. 6t o 0. 93. Fitting the SB data requires a concave upward or anti-flared outer disk, indicating substantial dust grain growth and settling by 8 ± 4 Myr. The warm dust component is significantly variable in near to mid-IR excess and in temperature. At its warmest, it appears confined to a narrow belt from 0.08 to 0.2 AU. The steep SED for this dust component is consistent with grains with a 2.5 μm. For cosmic carbon to silicate dust composition, conspicuous 10 μm silicate emission would be expected and is not observed. This may indicate an elevated carbon to silicate ratio for the warm dust, which is not required to fit the outer disk. At its coolest, the warm dust can be fit with a disk from 0.14 to 0.31 AU, but with a higher inclination than either the outer disk or the gaseous disk, providing confirmation of the high inclination inferred from mid-IR interferometry. In tandem, the compositional and inclination difference between the warm dust and the outer dust disk suggests that the warm dust may be of second-generation origin, rather than a remnant of a primordial disk component. With its near face-on inclination, SAO 206462’s disk is a prime location for planet searches.


The Astrophysical Journal | 2010

Locating the Accretion Footprint on a Herbig Ae Star: MWC 480

C. A. Grady; Kenji Hamaguchi; Glenn Schneider; B. Stecklum; Bruce E. Woodgate; Jacqueline McCleary; Gerard M. Williger; M. L. Sitko; Francois Menard; Th. Henning; Sean David Brittain; M. Troutmann; B. Donehew; Dean C. Hines; John P. Wisniewski; David K. Lynch; Ray W. Russell; R. J. Rudy; Amanda N. Day; A. Shenoy; David J. Wilner; M. Silverstone; J.-C. Bouret; H. Meusinger; M. Clampin; Sam Kim; R. Petre; M. Sahu; M. D. Endres; Karen A. Collins

Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with ~10× more photoelectric absorption than expected from optical and FUV data. We consider three sources for the absorption: the disk, absorption in a wind or jet, and accretion. While we detect the disk in scattered light in a re-analysis of archival Hubble Space Telescope data, the data are consistent with grazing illumination of the dust disk. We find that MWC 480s disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass-loss rate that is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480s O VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high-temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.


The Astronomical Journal | 2017

ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES

Karen A. Collins; John F. Kielkopf; Keivan G. Stassun; Frederic V. Hessman

ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard FITS files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System (WCS) aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.


The Astronomical Journal | 2015

KELT-7b: A Hot Jupiter Transiting A Bright V = 8.54 Rapidly Rotating F-Star

Allyson Bieryla; Karen A. Collins; Thomas G. Beatty; Jason D. Eastman; Robert J. Siverd; Joshua Pepper; B. Scott Gaudi; Keivan G. Stassun; Caleb Cañas; David W. Latham; Lars A. Buchhave; Roberto Sanchis-Ojeda; Joshua N. Winn; Eric L. N. Jensen; John F. Kielkopf; Kim K. McLeod; Joao Gregorio; Knicole D. Colón; R. A. Street; Rachel Ross; Matthew T. Penny; Samuel N. Mellon; Thomas E. Oberst; Benjamin J. Fulton; Ji Wang; Perry L. Berlind; Michael L. Calkins; Gilbert A. Esquerdo; D. L. DePoy; Andrew Gould

United States. National Aeronautics and Space Administration (Origins Program Grant NNX11AG85G)


The Astrophysical Journal | 2013

KELT-3b: A HOT JUPITER TRANSITING A V = 9.8 LATE-F STAR

Joshua Pepper; Robert J. Siverd; Thomas G. Beatty; B. Scott Gaudi; Keivan G. Stassun; Jason D. Eastman; Karen A. Collins; David W. Latham; Allyson Bieryla; Lars A. Buchhave; Eric L. N. Jensen; Mark Manner; K. Penev; Justin R. Crepp; Phillip A. Cargile; Saurav Dhital; Michael L. Calkins; Gilbert A. Esquerdo; Perry L. Berlind; Benjamin J. Fulton; R. A. Street; Bo Ma; Jian Ge; Ji Wang; Qingqing Mao; Alexander J. W. Richert; Andrew Gould; D. L. DePoy; John F. Kielkopf; J. L. Marshall

We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477 +0.066 −0.067 MJ, radius of 1.345 ± 0.072 RJ, and an orbital period of 2.7033904 ± 0.000010 days. The host star, KELT-3, is a V = 9.8 late F star with M∗ = 1.278 +0.063 −0.061 M� , R∗ = 1.472 +0.065 −0.067 R� , Teff = 6306 +5049 K, log(g) = 4.209 +0.033 −0.031, and [Fe/H] = 0.044 +0.080 −0.082 , and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically identified threshold for radius inflation suggested by Demory & Seager.


Nature | 2017

A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host

B. Scott Gaudi; Keivan G. Stassun; Karen A. Collins; Thomas G. Beatty; George Zhou; David W. Latham; Allyson Bieryla; Jason D. Eastman; Robert J. Siverd; Justin R. Crepp; Erica J. Gonzales; Daniel J. Stevens; Lars A. Buchhave; Joshua Pepper; Marshall C. Johnson; Knicole D. Colón; Eric L. N. Jensen; Joseph E. Rodriguez; V. Bozza; Sebastiano Calchi Novati; G. D’Ago; Mary Thea Dumont; Tyler Ellis; Clement Gaillard; Hannah Jang-Condell; David H. Kasper; A. Fukui; Joao Gregorio; Ayaka Ito; John F. Kielkopf

The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300–10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated–traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.


The Astronomical Journal | 2014

KELT-6b: A P ~ 7.9 Day Hot Saturn Transiting A Metal-Poor Star With A Long-Period Companion

Karen A. Collins; Jason D. Eastman; Thomas G. Beatty; Robert J. Siverd; B. Scott Gaudi; Joshua Pepper; John F. Kielkopf; John Asher Johnson; Andrew W. Howard; Debra A. Fischer; Mark Manner; Allyson Bieryla; David W. Latham; Benjamin J. Fulton; Joao Gregorio; Lars A. Buchhave; Eric L. N. Jensen; Keivan G. Stassun; K. Penev; Justin R. Crepp; Sasha Hinkley; R. A. Street; Phillip A. Cargile; Claude E. Mack; Thomas E. Oberst; Ryan L. Avril; Samuel N. Mellon; Kim K. McLeod; Matthew T. Penny; Robert P. Stefanik

We report the discovery of KELT-6b, a mildly inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V = 10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T_(eff_ = 6102 ± 43 K,_log g_* =4.07_(-0.07)^(+0.04), and [Fe/H] = –0.28 ± 0.04, with an inferred mass M_* = 1.09 ± 0.04 M_☉ and radius R_* =1.58_(-0.09)^(+0.16) ,R_☉. The planetary companion has mass M_P = 0.43 ± 0.05 M_(Jup), radius R_p =1.19_(-0.08)^(+0.13),R_(Jup), surface gravity g_p = 2.86_(-0.08)^(+0.06), and density P_p = 0.31_(-0.08)^(+0.07), cm^(-3). The planet is on an orbit with semimajor axis ɑ = 0.079 ± 0.001 AU and eccentricity e = 0.22_(-0.10)^(+0.12), which is roughly consistent with circular, and has ephemeris of T_c(BJD_(TDB)) = 2456347.79679 ± 0.00036 and P = 7.845631 ± 0.000046 days. Equally plausible fits that employ empirical constraints on the host-star parameters rather than isochrones yield a larger planet mass and radius by ~4}-7}. KELT-6b has surface gravity and incident flux similar to HD 209458b, but orbits a host that is more metal poor than HD 209458 by ~0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images.


Monthly Notices of the Royal Astronomical Society | 2016

KELT-10b: the first transiting exoplanet from the KELT-South survey - a hot sub-Jupiter transiting a V = 10.7 early G-star

Rudolf B. Kuhn; Joseph E. Rodriguez; Karen A. Collins; Michael B. Lund; Robert J. Siverd; Knicole D. Colón; Joshua Pepper; Keivan G. Stassun; Phillip A. Cargile; D. J. James; K. Penev; George Zhou; D. Bayliss; T. G. Tan; Ivan A. Curtis; S. Udry; D. Ségransan; Dimitri Mawet; Saurav Dhital; Jack Soutter; Rhodes Hart; B. D. Carter; B. Scott Gaudi; Gordon Myers; Thomas G. Beatty; Jason D. Eastman; Daniel E. Reichart; Joshua B. Haislip; John F. Kielkopf; Allyson Bieryla

We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with T_(eff) = 5948 ± 74 K, log g = 4.319^(+0.020)_(−0.030) and [Fe/H] = 0.09^(+0.11)_(−0.10), an inferred mass M^* = 1.112^(+0.055)_(−0.061) M_⊙ and radius R^* = 1.209^(+0.047)_(−0.035) R_⊙. The planet has a radius Rp = 1.399^(+0.069)_(−0.049) RJ and mass Mp = 0.679^(+0.039)_(−0.038) MJ. The planet has an eccentricity consistent with zero and a semimajor axis a = 0.05250^(+0.00086)_(−0.00097) au. The best-fitting linear ephemeris is T_0 = 2457 066.720 45 ± 0.000 27 BJD_(TDB) and P = 4.166 2739 ± 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of T_(eq) = 1377^(+28)_(−23) K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817^(+0.068)_(−0.054) × 10^9 erg s^(−1) cm^(−2), which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies.


The Astrophysical Journal | 2015

KELT-8b: A HIGHLY INFLATED TRANSITING HOT JUPITER AND A NEW TECHNIQUE FOR EXTRACTING HIGH-PRECISION RADIAL VELOCITIES FROM NOISY SPECTRA

Benjamin J. Fulton; Karen A. Collins; B. Scott Gaudi; Keivan G. Stassun; Joshua Pepper; Thomas G. Beatty; Robert J. Siverd; K. Penev; Andrew W. Howard; Christoph Baranec; Giorgio Corfini; Jason D. Eastman; Joao Gregorio; Nicholas M. Law; Michael B. Lund; Thomas E. Oberst; Matthew T. Penny; Reed Riddle; Joseph E. Rodriguez; Daniel J. Stevens; Roberto Zambelli; Carl Ziegler; Allyson Bieryla; G. D’Ago; D. L. DePoy; Eric L. N. Jensen; John F. Kielkopf; David W. Latham; Mark Manner; J. L. Marshall

We announce the discovery of a highly inflated transiting hot Jupiter by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with T_(eff)= 5754^(+54)_(-55)K, log g = 4.078^(0.049)_(0.054), [Fe/H] = 0.272 ± 0.038, an inferred mass M_* = 1.211_(0.066)^(+0.078)M_☉, and radius R_*=1.67 _(-0.12)^(+0.14) R_☉. The planetary companion has a mass Mp = 0.867 _(-0.061)^+(0.065) MJ, radius R_p 1.86_(-0.16)^(+0.18) R_J, surface gravity log g_p 2.793_(-0.075)^(+0.072), and density 0.167_(-0.038)^(+0.047) g cm^(−3). The planet is on a roughly circular orbit with semimajor axis ɑ 0.04571_(0.00084)^(+0.00096) AU and eccentricity e 0.035_(-0.025)^(+0.050). The best-fit linear ephemeris is T_0 = 2456883.4803 ± 0.0007 BJD_(TDB) and P = 3.24406 ± 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly irradiated gas giants. The low stellar log g and large implied radius are supported by stellar density constraints from follow-up light curves, as well as an evolutionary and space motion analysis. We also develop a new technique to extract high-precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of T_(eq) 1675_(-55)^(+61)K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.

Collaboration


Dive into the Karen A. Collins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Siverd

Las Cumbres Observatory Global Telescope Network

View shared research outputs
Top Co-Authors

Avatar

Thomas G. Beatty

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge