Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Ikin is active.

Publication


Featured researches published by Karen Ikin.


PLOS ONE | 2014

The trajectory of dispersal research in conservation biology. Systematic review.

Don A. Driscoll; Sam C. Banks; Philip S. Barton; Karen Ikin; Pia E. Lentini; David B. Lindenmayer; Annabel L. Smith; Laurence E. Berry; Emma Burns; Amanda Edworthy; Maldwyn J. Evans; Rebecca K Gibson; Robert Heinsohn; Brett Howland; Geoff Kay; Nicola T. Munro; Ben C. Scheele; Ingrid A. Stirnemann; Dejan Stojanovic; Nici Sweaney; Nélida R. Villaseñor; Martin J. Westgate

Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management decisions. Ambitious, multi-disciplinary research programs studying many species are critical for advancing dispersal research.


PLOS ONE | 2014

The Future of Large Old Trees in Urban Landscapes

Darren S. Le Roux; Karen Ikin; David B. Lindenmayer; Adrian D. Manning; Philip Gibbons

Large old trees are disproportionate providers of structural elements (e.g. hollows, coarse woody debris), which are crucial habitat resources for many species. The decline of large old trees in modified landscapes is of global conservation concern. Once large old trees are removed, they are difficult to replace in the short term due to typically prolonged time periods needed for trees to mature (i.e. centuries). Few studies have investigated the decline of large old trees in urban landscapes. Using a simulation model, we predicted the future availability of native hollow-bearing trees (a surrogate for large old trees) in an expanding city in southeastern Australia. In urban greenspace, we predicted that the number of hollow-bearing trees is likely to decline by 87% over 300 years under existing management practices. Under a worst case scenario, hollow-bearing trees may be completely lost within 115 years. Conversely, we predicted that the number of hollow-bearing trees will likely remain stable in semi-natural nature reserves. Sensitivity analysis revealed that the number of hollow-bearing trees perpetuated in urban greenspace over the long term is most sensitive to the: (1) maximum standing life of trees; (2) number of regenerating seedlings ha−1; and (3) rate of hollow formation. We tested the efficacy of alternative urban management strategies and found that the only way to arrest the decline of large old trees requires a collective management strategy that ensures: (1) trees remain standing for at least 40% longer than currently tolerated lifespans; (2) the number of seedlings established is increased by at least 60%; and (3) the formation of habitat structures provided by large old trees is accelerated by at least 30% (e.g. artificial structures) to compensate for short term deficits in habitat resources. Immediate implementation of these recommendations is needed to avert long term risk to urban biodiversity.


Landscape Ecology | 2013

Pocket parks in a compact city: how do birds respond to increasing residential density?

Karen Ikin; R. Matthew Beaty; David B. Lindenmayer; Emma Knight; Joern Fischer; Adrian D. Manning

Abstract The desire to improve urban sustainability is motivating many city planners to adopt growth strategies that increase residential density, leading to substantial changes to urban landscapes. What effect this change will have on biodiversity remains unclear, but it is expected that the role of public greenspace in providing wildlife habitat will become critical. We explored the role of urban “pocket parks” as habitat for birds, and how this role changed with increasing residential density in the surrounding neighbourhood. We found that parks in neighbourhoods with high levels of public greenspace (corresponding to less residential land) supported more bird species and individuals overall, and more woodland-dependent species, insectivores and hollow-nesters. Total greenspace area was more important (included in the best ranked models for all bird responses) than the configuration (number, average size and connectivity) of greenspace patches. The majority of species were common suburban birds, indicating that species we assume are tolerant to urban areas will be negatively affected by increasing residential density. Parks form part of an interconnected network of urban open space. For parks to continue to support a diverse native bird community, the network must be viewed, managed, and maintained in its entirety. We suggest three key management actions to improve the bird diversity values of urban greenspaces in compact cities: (1) Increase urban greenspace cover in residential neighbourhoods. (2) Increase vegetation structure in greenspace. (3) Encourage homeowners to plant trees and shrubs.


Ecological Applications | 2014

Cross-sectional and temporal relationships between bird occupancy and vegetation cover at multiple spatial scales

Ross B. Cunningham; David B. Lindenmayer; Philip S. Barton; Karen Ikin; Mason Crane; Damian Michael; Sachiko Okada; Philip Gibbons; John Stein

Scale is a key concept in ecology, but the statistically based quantification of scale effects has often proved difficult. This is exemplified by the challenges of quantifying relationships between biodiversity and vegetation cover at different spatial scales to guide restoration and conservation efforts in agricultural environments. We used data from 2002 to 2010 on 184 sites (viz., site scale) nested within 46 farms (the farm scale), nested within 23 landscapes (the landscape scale). We found cross-sectional relationships with the amount of vegetation cover that were typically positive for woodland birds and negative for open-country birds. However, for some species, relationships differed between spatial scales, suggesting differences in nesting and foraging requirements. There was a 3.5% increase in the amount of native vegetation cover in our study region between 2002 and 2010, and our analyses revealed that some open country species responded negatively to these temporal changes, typically at the farm and/or site scale, but not the landscape scale. Species generally exhibited stronger cross-sectional relationships with the amount of vegetation cover than relationships between changes in occupancy and temporal changes in vegetation cover. This unexpected result can be attributed to differences in habitat use by birds of existing vegetation cover (typically old-growth woodland) vs. plantings and natural regeneration, which are the main contributors to temporal increases in vegetation cover. By taking a multi-scaled empirical approach, we have identified species-specific, scale-dependent responses to vegetation cover. These findings are of considerable practical importance for understanding which species will respond to different scales of protection of existing areas of native vegetation, efforts to increase the amount of native vegetation over time, and both approaches together.


Urban Ecosystems | 2012

Linking bird species traits to vegetation characteristics in a future urban development zone: implications for urban planning

Karen Ikin; Emma Knight; David B. Lindenmayer; Joern Fischer; Adrian D. Manning

Identifying the relationships between species traits and patch-scale vegetation characteristics in areas designated for urban development can improve our understanding of how animal communities may change with urbanization. We explored the implications of this premise to the urban planning process in a mixed-use landscape in Canberra (Australia), prior to its development into new suburbs. We used RLQ analysis to relate bird foraging, nesting and body size traits to patch-scale vegetation characteristics. Relationships between species traits and vegetation characteristics within the development zone suggest that species that forage and nest on the ground and in the understory strata, and smaller-bodied species will be most negatively affected by urbanization. Identifying the relationships between species traits and vegetation characteristics may be used by urban planners to (i) identify potentially critical habitat and species at risk from development, (ii) inform the choice of impact mitigation measures, and/or (iii) distinguish between high and low mitigation measures. Analyses conducted early in the planning process can then be used to allocate proposed land uses in an ecologically sensitive way, and to plan appropriate mitigation measures.


Oecologia | 2015

Measuring habitat heterogeneity reveals new insights into bird community composition

Ingrid A. Stirnemann; Karen Ikin; Philip Gibbons; Wade Blanchard; David B. Lindenmayer

Fine-scale vegetation cover is a common variable used to explain animal occurrence, but we know less about the effects of fine-scale vegetation heterogeneity. Theoretically, fine-scale vegetation heterogeneity is an important driver of biodiversity because it captures the range of resources available in a given area. In this study we investigated how bird species richness and birds grouped by various ecological traits responded to vegetation cover and heterogeneity. We found that both fine-scale vegetation cover (of tall trees, medium-sized trees and shrubs) and heterogeneity (of tall trees, and shrubs) were important predictors of bird richness, but the direction of the response of bird richness to shrub heterogeneity differed between sites with different proportions of tall tree cover. For example, bird richness increased with shrub heterogeneity in sites with high levels of tall tree cover, but declined in sites with low levels of tall tree cover. Our findings indicated that an increase in vegetation heterogeneity will not always result in an increase in resources and niches, and associated higher species richness. We also found birds grouped by traits responded in a predictable way to vegetation heterogeneity. For example, we found small birds benefited from increased shrub heterogeneity supporting the textual discontinuity hypothesis and non-arboreal (ground or shrub) nesting species were associated with high vegetation cover (low heterogeneity). Our results indicated that focusing solely on increasing vegetation cover (e.g. through restoration) may be detrimental to particular animal groups. Findings from this investigation can help guide habitat management for different functional groups of birds.


Oecologia | 2014

Bird community responses to the edge between suburbs and reserves

Karen Ikin; Philip S. Barton; Emma Knight; David B. Lindenmayer; Joern Fischer; Adrian D. Manning

New insights into community-level responses at the urban fringe, and the mechanisms underlying them, are needed. In our study, we investigated the compositional distinctiveness and variability of a breeding bird community at both sides of established edges between suburban residential areas and woodland reserves in Canberra, Australia. Our goals were to determine if: (1) community-level responses were direct (differed with distance from the edge, independent of vegetation) or indirect (differed in response to edge-related changes in vegetation), and (2) if guild-level responses provided the mechanism underpinning community-level responses. We found that suburbs and reserves supported significantly distinct bird communities. The suburban bird community, characterised by urban-adapted native and exotic species, had a weak direct edge response, with decreasing compositional variability with distance from the edge. In comparison, the reserve bird community, characterised by woodland-dependent species, was related to local tree and shrub cover. This was not an indirect response, however, as tree and shrub cover was not related to edge distance. We found that the relative richness of nesting, foraging and body size guilds also displayed similar edge responses, indicating that they underpinned the observed community-level responses. Our study illustrates how community-level responses provide valuable insights into how communities respond to differences in resources between two contrasting habitats. Further, the effects of the suburban matrix penetrate into reserves for greater distances than previously thought. Suburbs and adjacent reserves, however, provided important habitat resources for many native species and the conservation of these areas should not be discounted from continued management strategies.


Biodiversity and Conservation | 2016

Long-term bird colonization and turnover in restored woodlands

David B. Lindenmayer; Peter W. Lane; Philip S. Barton; Mason Crane; Karen Ikin; Damian Michael; Sachiko Okada

The long-term effectiveness of restored areas for biodiversity is poorly known for the majority of restored ecosystems worldwide. We quantified temporal changes in bird occurrence in restoration plantings of different ages and geometries, and compared observed patterns with a reference dataset from woodland remnants on the same farms as our plantings. Over time, bird species richness remained unchanged in spring but exhibited modest increases in winter. We found that wider plantings supported significantly greater bird species richness in spring and winter than narrow plantings. There was no evidence of a significant interaction between planting width and time. We recorded major temporal changes in the occurrence of a range of individual species that indicated a clear turnover of species as plantings matured. Our results further revealed marked differences in individual species occurrence between plantings and woodland remnants. Life-history attributes associated with temporal changes in the bird assemblage were most apparent in winter survey data, and included diet, foraging and nesting patterns, movement behaviour (e.g. migratory vs. dispersive), and body size. Differences in bird assemblages between plantings of different ages suggest that it is important that farms support a range of age classes of planted woodland, if the aim is to maximize the number of native bird species in restored areas. Our data also suggest that changes in the bird species occupying plantings of different ages can be anticipated in a broadly predictable way based on planting geometry (especially width) and key life-history attributes, particularly movement patterns and habitat and diet specialisation.


PLOS ONE | 2014

Multi-Scale Associations between Vegetation Cover and Woodland Bird Communities across a Large Agricultural Region

Karen Ikin; Philip S. Barton; Ingrid A. Stirnemann; John Stein; Damian Michael; Mason Crane; Sachiko Okada; David B. Lindenmayer

Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km2) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.


Landscape Ecology | 2015

Woodland habitat structures are affected by both agricultural land management and abiotic conditions

Karen Ikin; Alessio Mortelliti; John Stein; Damian Michael; Mason Crane; Sachiko Okada; Jeffrey Wood; David B. Lindenmayer

ContextThe identification of habitat structures with biologically meaningful links to habitat quality has enabled an increased understanding of wildlife distributions in fragmented landscapes. However, knowledge is lacking of where these structures occur in the landscape.ObjectivesFor a broad-scale agricultural landscape, we investigated how the occurrence and abundance of wildlife habitat structures is related to abiotic conditions and land management practices, and whether this differed between old growth and regrowth woodland.MethodsWe used generalised linear mixed models to investigate the distribution of eight habitat structures in the South-West Slopes bioregion of south-eastern Australia.ResultsOnly one habitat structure, canopy depth, was related to abiotic conditions alone, whereas only leaf litter cover was related to land management practices only. Each of the other structures (abundance of logs, large trees, hollow-bearing trees, mid-sized trees and dead trees, and amount of native grass cover) was related to a combination and/or interaction of abiotic conditions and land management practices. Old growth woodland had higher log, large tree and hollow-bearing tree abundance, whereas regrowth woodland had higher mid-sized tree and dead tree abundance.ConclusionsOur findings inform key management prescriptions that can be used to improve conservation efforts so they have strong, quantifiable effects on wildlife habitat in temperate agricultural landscapes. Our case study shows that by understanding how management actions in specific abiotic conditions lead to the increased occurrence or abundance of particular habitat structures, management can be spatially targeted to alternative conservation strategies relevant to the landscape of interest.

Collaboration


Dive into the Karen Ikin's collaboration.

Top Co-Authors

Avatar

David B. Lindenmayer

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Adrian D. Manning

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Philip Gibbons

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Philip S. Barton

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Damian Michael

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Mason Crane

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Sachiko Okada

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Darren S. Le Roux

Australian National University

View shared research outputs
Top Co-Authors

Avatar

John Stein

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Martin J. Westgate

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge