Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen R. Leander is active.

Publication


Featured researches published by Karen R. Leander.


Biochemical Journal | 2005

Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors

Stanley F. Barnett; Deborah Defeo-Jones; Sheng Fu; Paula J. Hancock; Kathleen M. Haskell; Raymond E. Jones; Jason Kahana; Astrid M. Kral; Karen R. Leander; Ling L. Lee; John Malinowski; Elizabeth McAvoy; Debbie D. Nahas; Ronald G. Robinson; Hans E. Huber

We developed a high-throughput HTRF (homogeneous time-resolved fluorescence) assay for Akt kinase activity and screened approx. 270000 compounds for their ability to inhibit the three isoforms of Akt. Two Akt inhibitors were identified that exhibited isoenzyme specificity. The first compound (Akt-I-1) inhibited only Akt1 (IC50 4.6 microM) while the second compound (Akt-I-1,2) inhibited both Akt1 and Akt2 with IC50 values of 2.7 and 21 microM respectively. Neither compound inhibited Akt3 nor mutants lacking the PH (pleckstrin homology) domain at concentrations up to 250 microM. These compounds were reversible inhibitors, and exhibited a linear mixed-type inhibition against ATP and peptide substrate. In addition to inhibiting kinase activity of individual Akt isoforms, both inhibitors blocked the phosphorylation and activation of the corresponding Akt isoforms by PDK1 (phosphoinositide-dependent kinase 1). A model is proposed in which these inhibitors bind to a site formed only in the presence of the PH domain. Binding of the inhibitor is postulated to promote the formation of an inactive conformation. In support of this model, antibodies to the Akt PH domain or hinge region blocked the inhibition of Akt by Akt-I-1 and Akt-I-1,2. These inhibitors were found to be cell-active and to block phosphorylation of Akt at Thr308 and Ser473, reduce the levels of active Akt in cells, block the phosphorylation of known Akt substrates and promote TRAIL (tumour-necrosis-factor-related apoptosis-inducing ligand)-induced apoptosis in LNCap prostate cancer cells.


PLOS ONE | 2008

Breast Tumor Cells with PI3K Mutation or HER2 Amplification Are Selectively Addicted to Akt Signaling

Qing-Bai She; Sarat Chandarlapaty; Qing Ye; Jose Lobo; Kathleen M. Haskell; Karen R. Leander; Deborah Defeo-Jones; Hans E. Huber; Neal Rosen

Background Dysregulated PI3K/Akt signaling occurs commonly in breast cancers and is due to HER2 amplification, PI3K mutation or PTEN inactivation. The objective of this study was to determine the role of Akt activation in breast cancer as a function of mechanism of activation and whether inhibition of Akt signaling is a feasible approach to therapy. Methodology/Principal Findings A selective allosteric inhibitor of Akt kinase was used to interrogate a panel of breast cancer cell lines characterized for genetic lesions that activate PI3K/Akt signaling: HER2 amplification or PI3K or PTEN mutations in order to determine the biochemical and biologic consequences of inhibition of this pathway. A variety of molecular techniques and tissue culture and in vivo xenograft models revealed that tumors with mutational activation of Akt signaling were selectively dependent on the pathway. In sensitive cells, pathway inhibition resulted in D-cyclin loss, G1 arrest and induction of apoptosis, whereas cells without pathway activation were unaffected. Most importantly, the drug effectively inhibited Akt kinase and its downstream effectors in vivo and caused complete suppression of the growth of breast cancer xenografts with PI3K mutation or HER2 amplification, including models of the latter selected for resistance to Herceptin. Furthermore, chronic administration of the drug was well-tolerated, causing only transient hyperglycemia without gross toxicity to the host despite the pleiotropic normal functions of Akt. Conclusions/Significance These data demonstrate that breast cancers with PI3K mutation or HER2 amplification are selectively dependent on Akt signaling, and that effective inhibition of Akt in tumors is feasible and effective in vivo. These findings suggest that direct inhibition of Akt may represent a therapeutic strategy for breast and other cancers that are addicted to the pathway including tumors with resistant to Herceptin.


Nature Medicine | 2000

A peptide–doxorubicin 'prodrug' activated by prostate-specific antigen selectively kills prostate tumor cells positive for prostate-specific antigen in vivo

Deborah Defeo-Jones; Victor M. Garsky; Bradley K. Wong; Dong-Mei Feng; Trina Bolyar; Kathleen M. Haskell; David M. Kiefer; Karen R. Leander; Elizabeth McAvoy; Patricia K. Lumma; Jenny Miu-Chun Wai; Edith T. Senderak; Sherri L. Motzel; Kevin P. Keenan; Matthew J. van Zwieten; Jiunn H. Lin; Roger M. Freidinger; Joel R. Huff; Allen Oliff; Raymond E. Jones

We covalently linked doxorubicin with a peptide that is hydrolyzable by prostate-specific antigen. In the presence of prostate tumor cells secreting prostate-specific antigen, the peptide moiety of this conjugate, L-377,202, was hydrolyzed, resulting in the release of leucine-doxorubicin and doxorubicin, which are both very cytotoxic to cancer cells. However, L-377,202 was much less cytotoxic than conventional doxorubicin to cells in culture that do not secrete prostate-specific antigen. L-377,202 was approximately 15 times more effective than was conventional doxorubicin at inhibiting the growth of human prostate cancer tumors in nude mice when both drugs were used at their maximally tolerated doses. Nude mice inoculated with human prostate tumor cells secreting prostate-specific antigen showed considerable reductions in tumor burden with minimal total body weight loss when treated with L-377,202. This improvement in therapeutic index correlated with the selective localization of leucine–doxorubicin and free doxorubicin in tissues secreting prostate-specific antigen after exposure to L-377,202.


Bioorganic & Medicinal Chemistry Letters | 2008

Allosteric inhibitors of Akt1 and Akt2: a naphthyridinone with efficacy in an A2780 tumor xenograft model.

Mark T. Bilodeau; Adrienne E. Balitza; Jacob M. Hoffman; Peter J. Manley; Stanley F. Barnett; Deborah Defeo-Jones; Kathleen M. Haskell; Raymond E. Jones; Karen R. Leander; Ronald G. Robinson; Anthony M. Smith; Hans E. Huber; George D. Hartman

A series of naphthyridine and naphthyridinone allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been optimized to have potent dual activity against the activated kinase as well as the activation of Akt in cells. One molecule in particular, compound 17, has potent inhibitory activity against Akt1 and 2 in vivo in a mouse lung and efficacy in a tumor xenograft model.


Journal of Histochemistry and Cytochemistry | 2011

Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated delivery.

Bin Shi; Ed Keough; Andrea Matter; Karen R. Leander; Stephanie Young; Ed Carlini; Alan B. Sachs; Weikang Tao; Marc T. Abrams; Bonnie J. Howell; Laura Sepp-Lorenzino

Chemically stabilized small interfering RNA (siRNA) can be delivered systemically by intravenous injection of lipid nanoparticles (LNPs) in rodents and primates. The biodistribution and kinetics of LNP–siRNA delivery in mice at organ and cellular resolution have been studied using immunofluorescence (IF) staining and quantitative polymerase chain reaction (qPCR). At 0.5 and 2 hr post tail vein injection of Cy5-labeled siRNA encapsulated in LNP, the organ rank-order of siRNA levels is liver > spleen > kidney, with only negligible accumulation in duodenum, lung, heart, and brain. Similar conclusions were drawn by using qPCR to measure tissue siRNA levels as a secondary end point. siRNA levels in these tissues decreased by more than 10-fold after 24 hr. Within the liver, LNPs delivered siRNA to hepatocytes, Kupffer cells, and sinusoids in a time-dependent manner, as revealed by IF staining and signal quantitation methods established using OPERA/Columbus software. siRNA first accumulated in liver sinusoids and trafficked to hepatocytes by 2 hr post dose, corresponding to the onset of target mRNA silencing. Fluorescence in situ hybridization methods were used to detect both strands of siRNA in fixed tissues. Collectively, the authors have implemented a platform to evaluate biodistribution of siRNA across cell types and across tissues in vivo, with the objective of elucidating the pharmacokinetic and pharmacodynamic relationship to guide optimization of delivery vehicles.


Bioorganic & Medicinal Chemistry Letters | 2009

Allosteric inhibitors of Akt1 and Akt2: discovery of [1,2,4]triazolo[3,4-f][1,6]naphthyridines with potent and balanced activity.

Yiwei Li; Jun Liang; Tony Siu; Essa Hu; Michael A. Rossi; Stanley F. Barnett; Deborah Defeo-Jones; Raymond E. Jones; Ronald G. Robinson; Karen R. Leander; Hans E. Huber; Sachin Mittal; Nicholas Cosford; Peppi Prasit

A series of [1,2,4]triazolo[3,4-f][1,6]naphthyridine allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been shown to have potent dual Akt1 and 2 cell potency. The representative compound 13 provided potent inhibitory activity against Akt1 and 2 in vivo in a mouse model.


Cancer Biology & Therapy | 2010

An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo

Craig Cherrin; Kathleen M. Haskell; Bonnie J. Howell; Raymond E. Jones; Karen R. Leander; Ronald G. Robinson; Aubrey Watkins; Mark T. Bilodeau; Jacob M. Hoffman; Philip E. Sanderson; George D. Hartman; Elizabeth Mahan; Thomayant Prueksaritanont; Guoqiang Jiang; Qing-Bai She; Neal Rosen; Laura Sepp-Lorenzino; Deborah Defeo-Jones; Hans E. Huber

The PI3K-Akt pathway is dysregulated in the majority of solid tumors. Pharmacological inhibition of Akt is a promising strategy for treating tumors resistant to growth factor receptor antagonists due to mutations in PI3K or PTEN. We have developed allosteric, isozyme-specific inhibitors of Akt activity and activation, as well as ex vivo kinase assays to measure inhibition of individual Akt isozymes in tissues. Here we describe the relationship between PK, Akt inhibition, hyperglycemia and tumor efficacy for a selective inhibitor of Akt1 and Akt2 (AKTi). In nude mice, AKTi treatment caused transient insulin resistance and reversible, dose-dependent hyperglycemia and hyperinsulinemia. Akt1 and Akt2 phosphorylation was inhibited in mouse lung with EC50 values of 1.6 and 7 μM, respectively, and with similar potency in other tissues and xenograft tumors. Weekly subcutaneous dosing of AKTi resulted in dose-dependent inhibition of LNCaP prostate cancer xenografts, an AR-dependent tumor with PTEN deletion and constitutively activated Akt. Complete tumor growth inhibition was achieved at 200 mpk, a dose that maintained inhibition of Akt1 and Akt2 of greater than 80% and 50%, respectively, for at least 12 hours in xenograft tumor and mouse lung. Hyperglycemia could be controlled by reducing Cmax, while maintaining efficacy in the LNCaP model, but not by insulin administration. AKTi treatment was well tolerated, without weight loss or gross toxicities. These studies supported the rationale for clinical development of allosteric Akt inhibitors and provide the basis for further refining of pharmacokinetic properties and dosing regimens of this class of inhibitors.


Bioconjugate Chemistry | 2013

Endosomolytic Bioreducible Poly(amido amine disulfide) Polymer Conjugates for the in Vivo Systemic Delivery of siRNA Therapeutics

Rubina Parmar; Marina Busuek; Eileen S. Walsh; Karen R. Leander; Bonnie J. Howell; Laura Sepp-Lorenzino; Eric Kemp; Louis S. Crocker; Anthony Leone; Christopher J. Kochansky; Brian A. Carr; Robert M. Garbaccio; Steven L. Colletti; Weimin Wang

Efficient siRNA delivery is dependent not only on the ability of the delivery vehicle to target a specific organ but also on its ability to enable siRNA entry into the cytoplasm of the target cells. Polymers with endosomolytic properties are increasingly being used as siRNA delivery vehicles due to their potential to facilitate endosomal escape and intracellular delivery. Addition of disulfide bonds in the backbone of these polymers was expected to provide degradability through reduction by glutathione in cytosol. This paper describes the synthesis of new endosomolytic bioreducible poly(amido amine disulfide) polymers whose lytic potential can be masked at physiological pH, but can be restored at acidic endosomal pH. These polymer conjugates gave good in vitro knockdown (KD) and did not demonstrate cytotoxicity in a MTS assay. Efficient mRNA KD for apolipoprotein B in mouse liver was observed with these polyconjugates following intravenous dosing.


The Prostate | 2010

Androgen ablation augments human HLA2.1-restricted T cell responses to PSA self-antigen in transgenic mice.

Mohamed S. Arredouani; Stephanie Tseng-Rogenski; Brent K. Hollenbeck; June Escara-Wilke; Karen R. Leander; Deborah Defeo-Jones; Clara Hwang; Martin G. Sanda

In recent years, there has been an increasing interest in targeting human prostate tumor‐associated antigens (TAAs) for prostate cancer immunotherapy as an alternative to other therapeutic modalities. However, immunologic tolerance to TAA poses a significant obstacle to effective, TAA‐targeted immunotherapy. We sought to investigate whether androgen deprivation would result in circumventing immune tolerance to prostate TAA by impacting CD8 cell responses.


Molecular therapy. Nucleic acids | 2015

Proof-of-concept Studies for siRNA-mediated Gene Silencing for Coagulation Factors in Rat and Rabbit

Zhu Chen; Bin Luo; Tian-Quan Cai; Anil Thankappan; Yiming Xu; Weizhen Wu; Jillian DiMuzio; Traci Q. Lifsted; Marty DiPietro; Jyoti Disa; Bruce Ng; Karen R. Leander; Seth Clark; Lizbeth Hoos; Yuchen Zhou; Nina Jochnowitz; Christine Jachec; Peter Szczerba; Marian Gindy; Walter Strapps; Laura Sepp-Lorenzino; Dietmar Seiffert; Laura S. Lubbers; Marija Tadin-Strapps

The present study aimed at establishing feasibility of delivering short interfering RNA (siRNA) to target the coagulation cascade in rat and rabbit, two commonly used species for studying thrombosis and hemostasis. siRNAs that produced over 90% mRNA knockdown of rat plasma prekallikrein and rabbit Factor X (FX) were identified from in vitro screens. An ionizable amino lipid based lipid nanoparticle (LNP) formulation for siRNA in vivo delivery was characterized as tolerable and exerting no appreciable effect on coagulability at day 7 postdosing in both species. Both prekallikrein siRNA-LNP and FX siRNA-LNP resulted in dose-dependent and selective knockdown of target gene mRNA in the liver with maximum reduction of over 90% on day 7 following a single dose of siRNA-LNP. Knockdown of plasma prekallikrein was associated with modest clot weight reduction in the rat arteriovenous shunt thrombosis model and no increase in the cuticle bleeding time. Knockdown of FX in the rabbit was accompanied with prolongation in ex vivo clotting times. Results fit the expectations with both targets and demonstrate for the first time, the feasibility of targeting coagulation factors in rat, and, more broadly, targeting a gene of interest in rabbit, via systemic delivery of ionizable LNP formulated siRNA.

Collaboration


Dive into the Karen R. Leander's collaboration.

Researchain Logo
Decentralizing Knowledge