Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen W. Davenport is active.

Publication


Featured researches published by Karen W. Davenport.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing

Patrick M. Shih; Dongying Wu; Amel Latifi; Seth D. Axen; David P. Fewer; Emmanuel Talla; Alexandra Calteau; Fei Cai; Nicole Tandeau de Marsac; Rosmarie Rippka; Michael Herdman; Kaarina Sivonen; Thérèse Coursin; Lynne Goodwin; Matt Nolan; Karen W. Davenport; Cliff Han; Edward M. Rubin; Jonathan A. Eisen; Tanja Woyke; Muriel Gugger; Cheryl A. Kerfeld

The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for “green” biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it.


PLOS ONE | 2012

Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2.

Sanaa Ahmed; Joy Awosika; Carson Baldwin; Kimberly A. Bishop-Lilly; Biswajit Biswas; S. M. Broomall; Patrick Chain; Olga Chertkov; Otar Chokoshvili; Susan R. Coyne; Karen W. Davenport; J. Chris Detter; William Dorman; Tracy Erkkila; Jason P. Folster; K. G. Frey; Matroner George; Cheryl D. Gleasner; Matthew Henry; Karen K. Hill; Kyle S. Hubbard; Joseph Insalaco; Shannon L. Johnson; Aaron Kitzmiller; Michael Krepps; Chien-Chi Lo; Truong Luu; Lauren McNew; Timothy D. Minogue; Christine Munk

In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C–3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL–2050 and 2009EL–2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL–2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.


Frontiers in Microbiology | 2013

Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics

David Emerson; Erin K. Field; Olga Chertkov; Karen W. Davenport; Lynne Goodwin; Christine Munk; Matt Nolan; Tanja Woyke

The two microaerophilic, Fe-oxidizing bacteria (FeOB) Sideroxydans ES-1 and Gallionella ES-2 have single circular chromosomes of 3.00 and 3.16 Mb that encode 3049 and 3006 genes, respectively. Multi-locus sequence analysis (MLSA) confirmed the relationship of these two organisms to one another, and indicated they may form a novel order, the Gallionellalaes, within the Betaproteobacteria. Both are adapted for chemolithoautotropy, including pathways for CO2-fixation, and electron transport pathways adapted for growth at low O2-levels, an important adaptation for growing on Fe(II). Both genomes contain Mto-genes implicated in iron-oxidation, as well as other genes that could be involved in Fe-oxidation. Nearly 10% of their genomes are devoted to environmental sensing, signal transduction, and chemotaxis, consistent with their requirement for growing in narrow redox gradients of Fe(II) and O2. There are important differences as well. Sideroxydans ES-1 is more metabolically flexible, and can utilize reduced S-compounds, including thiosulfate, for lithotrophic growth. It has a suite of genes for nitrogen fixation. Gallionella ES-2 contains additional gene clusters for exopolysaccharide production, and has more capacity to resist heavy metals. Both strains contain genes for hemerythrins and globins, but ES-1 has an especially high numbers of these genes that may be involved in oxygen homeostasis, or storage. The two strains share homology with the marine FeOB Mariprofundus ferrooxydans PV-1 in CO2 fixation genes, and respiratory genes. In addition, ES-1 shares a suite of 20 potentially redox active genes with PV-1, as well as a large prophage. Combined these genetic, morphological, and physiological differences indicate that these are two novel species, Sideroxydans lithotrophicus ES-1T (ATCC 700298T; JCM 14762; DSMZ 22444; NCMA B100), and Gallionella capsiferriformans ES-2T (ATCC 700299T; JCM 14763; DSMZ 22445; NCMA B101).


The ISME Journal | 2011

Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio

Aaron S. Adams; Michelle S. Jordan; Sandye M. Adams; Garret Suen; Lynne Goodwin; Karen W. Davenport; Cameron R. Currie; Kenneth F. Raffa

Sirex noctilio is an invasive wood-feeding wasp that threatens the worlds commercial and natural pine forests. Successful tree colonization by this insect is contingent on the decline of host defenses and the ability to utilize the woody substrate as a source of energy. We explored its potential association with bacterial symbionts that may assist in nutrient acquisition via plant biomass deconstruction using growth assays, culture-dependent and -independent analysis of bacterial frequency of association and whole-genome analysis. We identified Streptomyces and γ-Proteobacteria that were each associated with 94% and 88% of wasps, respectively. Streptomyces isolates grew on all three cellulose substrates tested and across a range of pH 5.6 to 9. On the basis of whole-genome sequencing, three Streptomyces isolates have some of the highest proportions of genes predicted to encode for carbohydrate-active enzymes (CAZyme) of sequenced Actinobacteria. γ-Proteobacteria isolates grew on a cellulose derivative and a structurally diverse substrate, ammonia fiber explosion-treated corn stover, but not on microcrystalline cellulose. Analysis of the genome of a Pantoea isolate detected genes putatively encoding for CAZymes, the majority predicted to be active on hemicellulose and more simple sugars. We propose that a consortium of microorganisms, including the described bacteria and the fungal symbiont Amylostereum areolatum, has complementary functions for degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide.


Proceedings of the National Academy of Sciences of the United States of America | 2013

High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake

Matthew Z. DeMaere; Timothy J. Williams; Michelle A. Allen; Mark V. Brown; John A. E. Gibson; John Rich; Federico M. Lauro; Michael Dyall-Smith; Karen W. Davenport; Tanja Woyke; Nikos C. Kyrpides; Susannah G. Tringe; Ricardo Cavicchioli

Significance Horizontal gene exchange across species boundaries is considered infrequent relative to vertical inheritance that maintains species coherence. However, haloarchaea living in hypersaline environments take a more relaxed approach to gene exchange. Here we demonstrate that in Deep Lake, Antarctica, haloarchaea exchange DNA between distinct genera, not just species, with some of the DNA being long (up to 35 kb) and virtually 100% conserved. With extremely low cell division rates in the cold (e.g., six generations per year), the remarkable extent of lateral exchange could conceivably homogenize the population. It is therefore equally notable that despite the demonstrated capacity for exchange, different genera are maintained, their coexistence being linked to genomic differences conferring ecotype distinctions that enable niche adaptation. Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to −20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.


Journal of Bacteriology | 2011

Complete Genome Sequence of the Cellulolytic Thermophile Clostridium thermocellum DSM1313

Lawrence Feinberg; Justine Foden; Trisha Barrett; Karen W. Davenport; David Bruce; Chris Detter; Roxanne Tapia; Cliff Han; Alla Lapidus; Susan Lucas; Jan-Fang Cheng; Samuel Pitluck; Tanja Woyke; Natalia Ivanova; Natalia Mikhailova; Miriam Land; Loren Hauser; D. Aaron Argyros; Lynne Goodwin; David A. Hogsett; Nicky Caiazza

Clostridium thermocellum DSM1313 is a thermophilic, anaerobic bacterium with some of the highest rates of cellulose hydrolysis reported. The complete genome sequence reveals a suite of carbohydrate-active enzymes and demonstrates a level of diversity at the species level distinguishing it from the type strain ATCC 27405.


Standards in Genomic Sciences | 2011

Complete genome sequence of “Enterobacter lignolyticus” SCF1

Kristen M. DeAngelis; Patrik D'haeseleer; Dylan Chivian; Julian L. Fortney; Jane Khudyakov; Blake A. Simmons; Hannah Woo; Adam P. Arkin; Karen W. Davenport; Lynne Goodwin; Amy Chen; Natalia Ivanova; Nikos C. Kyrpides; Konstantinos Mavromatis; Tanja Woyke; Terry C. Hazen

In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated “Enterobacter lignolyticus” SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anaerobically, we sequenced the genome. The genome of “E. lignolyticus” SCF1 is 4.81 Mbp with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohydrate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degradation pathway encoded in a single gene cluster.


Genome Research | 2013

Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome

Michael S. Fitzsimons; Mark Novotny; Chien-Chi Lo; Armand E. K. Dichosa; Joyclyn Yee-Greenbaum; Jeremy P. Snook; Wei Gu; Olga Chertkov; Karen W. Davenport; Kim McMurry; Krista G. Reitenga; Ashlynn R. Daughton; Jian He; Shannon L. Johnson; Cheryl D. Gleasner; Patti L. Wills; B. Parson-Quintana; Patrick Chain; John C. Detter; Roger S. Lasken; Cliff Han

The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation. DNA is amplified directly from a single cell using the whole-genome amplification technique of multiple displacement amplification (MDA). However, MDA from a single chromosome copy suffers from amplification bias and a large loss of specificity from even very small amounts of DNA contamination, which makes assembling a genome difficult and completely finishing a genome impossible except in extraordinary circumstances. Gel microdrop cultivation allows culturing of a diverse microbial community and provides hundreds to thousands of genetically identical cells as input for an MDA reaction. We demonstrate the utility of this approach by comparing sequencing results of gel microdroplets and single cells following MDA. Bias is reduced in the MDA reaction and genome sequencing, and assembly is greatly improved when using gel microdroplets. We acquired multiple near-complete genomes for two bacterial species from human oral and stool microbiome samples. A significant amount of genome diversity, including single nucleotide polymorphisms and genome recombination, is discovered. Gel microdroplets offer a powerful and high-throughput technology for assembling whole genomes from complex samples and for probing the pan-genome of naturally occurring populations.


Genome Announcements | 2013

Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod - ) Ineffective (Fix - ) Isolate from Coriaria nepalensis

Faten Ghodhbane-Gtari; Nicholas Beauchemin; David Bruce; Patrick Chain; Amy Chen; Karen W. Davenport; Shweta Deshpande; Chris Detter; Teal Furnholm; Lynne Goodwin; Maher Gtari; Cliff Han; James Han; Marcel Huntemann; Natalia Ivanova; Nikos C. Kyrpides; Miriam Land; Victor Markowitz; Kostas Mavrommatis; Matt Nolan; Imen Nouioui; Ioanna Pagani; Amrita Pati; Sam Pitluck; Catarina L. Santos; Arnab Sen; Saubashya Sur; Ernest Szeto; Fernando Tavares; Hazuki Teshima

ABSTRACT We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.


Journal of Bacteriology | 2010

Complete Genome Sequence of the Cellulolytic Thermophile Caldicellulosiruptor obsidiansis OB47T

James G. Elkins; Adriane Lochner; Scott D. Hamilton-Brehm; Karen W. Davenport; Mircea Podar; Steven D. Brown; Miriam Land; Loren Hauser; Dawn M. Klingeman; Babu Raman; Lynne Goodwin; Roxanne Tapia; Linda Meincke; John C. Detter; David Bruce; Cliff Han; Anthony V. Palumbo; Robert W. Cottingham; Martin Keller; David E. Graham

Caldicellulosiruptor obsidiansis OB47(T) (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.

Collaboration


Dive into the Karen W. Davenport's collaboration.

Top Co-Authors

Avatar

Shannon L. Johnson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David Bruce

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hajnalka E. Daligault

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Patrick Chain

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tanja Woyke

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. G. Frey

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

C. L. Redden

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

P. S. Chain

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge