Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria G. Frid is active.

Publication


Featured researches published by Maria G. Frid.


Circulation Research | 2002

Mature Vascular Endothelium Can Give Rise to Smooth Muscle Cells via Endothelial-Mesenchymal Transdifferentiation: In Vitro Analysis

Maria G. Frid; Vishakha A. Kale; Kurt R. Stenmark

Though in the past believed to be a rare phenomenon, endothelial-mesenchymal transdifferentiation has been described with increasing frequency in recent years. It is believed to be important in embryonic vascular development, yet less is known regarding its role in the adult vasculature. Using FACS and immunomagnetic (Dynabeads) purification techniques (based on uptake of DiI-acetylated low-density lipoproteins and/or PECAM-1 expression) and double-label indirect immunostaining (for endothelial and smooth muscle [SM] markers), we demonstrate that mature bovine vascular endothelium contains cells of an endothelial phenotype (defined by VE-cadherin, von Willebrand factor, PECAM-1, and elevated uptake of acetylated low-density lipoproteins) that can undergo endothelial-mesenchymal transdifferentiation and further differentiate into SM cells (as defined by expression of &agr;-SM-actin, SM22&agr;, calponin, and SM-myosin). “Transitional” cells, coexpressing both endothelial markers and &agr;-SM-actin, were consistently observed. The percentage of cells capable of endothelial-mesenchymal transdifferentiation within primary endothelial cultures was estimated as 0.01% to 0.03%. Acquisition of a SM phenotype occurred even in the absence of proliferation, in &ggr;-irradiated (30 Gy) and/or mitomycin C–treated primary cell cultures. Initiation of transdifferentiation correlated with disruption of cell-cell contacts (marked by loss of VE-cadherin expression) within endothelial monolayers, as well as with the action of transforming growth factor-&bgr;1. In conclusion, our in vitro data show that mature bovine systemic and pulmonary endothelium contains cells that can acquire a SM phenotype via a transdifferentiation process that is transforming growth factor-&bgr;1– and cell-cell contact–dependent, but proliferation-independent.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung

Aimee Y. Yu; Maria G. Frid; Larissa A. Shimoda; Charles M. Wiener; Kurt R. Stenmark; Gregg L. Semenza

Hypoxia-inducible factor (HIF)-1 is a basic helix-loop-helix transcription factor that transactivates genes encoding proteins that participate in homeostatic responses to hypoxia. Several of these downstream gene products, such as erythropoietin, vascular endothelial growth factor, heme oxygenase-1, and inducible nitric oxide synthase, may contribute to the pathogenesis of pulmonary hypertension. Previous studies demonstrated increased HIF-1 mRNA levels in rats and mice subjected to hypoxia. In this study, we have demonstrated spatial, temporal, and O2-dependent expression of HIF-1 protein. Immunoblot analysis revealed hypoxic induction of HIF-1 in all cultured pulmonary cell types assayed, including those derived from pulmonary arterial endothelium and smooth muscle, bronchial epithelium, alveolar macrophages, alveolar epithelium, and microvascular endothelium. In contrast to all other cell types, pulmonary arterial smooth muscle cells expressed HIF-1 under nonhypoxic conditions. Immunohistochemistry and immunoblot analysis of ferret lungs demonstrated pulmonary expression of HIF-1 in vivo. HIF-1 protein expression was induced maximally when lungs were ventilated with 0 or 1% O2 for 4 h. On reoxygenation, HIF-1 was rapidly degraded, with a half-life of <1 min. These findings demonstrate that HIF-1 expression is tightly coupled to O2 concentration in vivo and are consistent with the involvement of HIF-1 in the physiological and pathophysiological responses to hypoxia in the lung.Hypoxia-inducible factor (HIF)-1 is a basic helix-loop-helix transcription factor that transactivates genes encoding proteins that participate in homeostatic responses to hypoxia. Several of these downstream gene products, such as erythropoietin, vascular endothelial growth factor, heme oxygenase-1, and inducible nitric oxide synthase, may contribute to the pathogenesis of pulmonary hypertension. Previous studies demonstrated increased HIF-1 mRNA levels in rats and mice subjected to hypoxia. In this study, we have demonstrated spatial, temporal, and O2-dependent expression of HIF-1 protein. Immunoblot analysis revealed hypoxic induction of HIF-1 in all cultured pulmonary cell types assayed, including those derived from pulmonary arterial endothelium and smooth muscle, bronchial epithelium, alveolar macrophages, alveolar epithelium, and microvascular endothelium. In contrast to all other cell types, pulmonary arterial smooth muscle cells expressed HIF-1 under nonhypoxic conditions. Immunohistochemistry and immunoblot analysis of ferret lungs demonstrated pulmonary expression of HIF-1 in vivo. HIF-1 protein expression was induced maximally when lungs were ventilated with 0 or 1% O2 for 4 h. On reoxygenation, HIF-1 was rapidly degraded, with a half-life of <1 min. These findings demonstrate that HIF-1 expression is tightly coupled to O2 concentration in vivo and are consistent with the involvement of HIF-1 in the physiological and pathophysiological responses to hypoxia in the lung.


Developmental Biology | 1992

Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin.

Maria G. Frid; Boris V. Shekhonin; Victor E. Koteliansky; Marina A. Glukhova

Expression of the regulatory contractile proteins, heavy caldesmon (h-caldesmon) and calponin was studied in human aortic smooth muscle cells (SMCs) during development and compared with the expression of alpha-SM-actin and smooth muscle-myosin heavy chain (SM-MHCs). For this study, novel monoclonal antibodies specific to SM-MHCs, h-caldesmon, and calponin were developed and characterized. Aortic SMCs from fetuses of 8-10 and 20-22 weeks of gestation express alpha-SM-actin and SM-MHCs, but neither h-caldesmon nor calponin were expressed as demonstrated by immunoblotting and immunofluorescence techniques. In the adult aortic tunica media, SMCs contain all four markers. Thus, the expression of calponin, similar to the expression of alpha-SM-actin, SM-MHCs, and h-caldesmon, is developmentally regulated in aortic SMCs. In the adult aortic subendothelial (preluminal) part of tunica intima, numerous cells containing SM-MHCs, but lacking h-caldesmon and calponin, were found. These results illustrate the similarity of SMCs from intimal thickenings and immature (fetal) SMCs. Expression of contractile proteins in the developing SMCs is coordinately regulated; however, distinct groups of proteins appear to exist whose expression is regulated differently. Actin and myosin, being major contractile proteins, also play a structural role and appear rather early in development, whereas caldesmon and calponin, being involved in regulation of contraction, can serve as markers of higher SMC differentiation steps. In contrast, h-caldesmon and calponin were already present in visceral SMCs (trachea, esophagus) of the 10-week-old fetus. These results demonstrate that the time course of maturation of visceral SMCs is different from that of vascular SMCs.


Circulation Research | 1994

Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo.

Maria G. Frid; E P Moiseeva; Kurt R. Stenmark

Different smooth muscle cell (SMC) functions may require different cell phenotypes. Because the main pulmonary artery performs diverse functions, we hypothesized that it would contain heterogeneous SMC populations. If the hypothesis were confirmed, we wished to determine the developmental origin of the different populations. Using specific antibodies, we analyzed the expression of smooth muscle (SM) contractile and cytoskeletal proteins (alpha-SM-actin, SM myosin, calponin, desmin, and meta-vinculin) in the main pulmonary artery of fetal (60 to 270 days of gestation), neonatal, and adult animals. We demonstrated the existence of a complex, site-specific heterogeneity in the structure and cellular composition of the pulmonary arterial wall. We found that at least four cell/SMC phenotypes, based on immunobiochemical characteristics, cell morphology, and elastic lamellae arrangement pattern, were simultaneously expressed within the mature arterial media. Further, we were able to assess phenotypic alterations in each of the four identified cell populations during development. We found that each cell population within the arterial media expressed alpha-SM-actin at least at certain stages of development, thus demonstrating its smooth muscle identity. However, each cell population progressed along different developmental pathways, suggesting the existence of multiple and distinct cell lineages. A novel anti-metavinculin antibody described in this study reliably distinguished one SMC population from the others during all the developmental stages analyzed. We conclude that the pulmonary arterial media is indeed composed of multiple phenotypically distinct cell/SMC populations with unique lineages. We speculate that these distinct cell populations may serve different functions within the arterial media and may also respond in unique ways to pathophysiological stimuli.


Circulation Research | 1997

Smooth Muscle Cells Isolated From Discrete Compartments of the Mature Vascular Media Exhibit Unique Phenotypes and Distinct Growth Capabilities

Maria G. Frid; Almaz A. Aldashev; Edward C. Dempsey; Kurt R. Stenmark

Heterogeneity of smooth muscle cell (SMC) phenotype and function is rapidly emerging as an important concept. We have recently described that phenotypically distinct SMC subpopulations in bovine pulmonary arteries exhibit unique proliferative and matrix-producing responses to hypoxic pulmonary hypertension. To provide better understanding of the molecular mechanisms contributing to this phenomenon, experimental studies will require a reliable in vitro model. The purpose of the present study was first to determine if distinct SMC subpopulations, similar to those observed in vivo, could be selectively isolated from the mature arterial media, and then to evaluate whether select SMC subpopulations would exhibit heightened responses to growth-promoting stimuli and hypoxia. We were able to reproducibly isolate at least four phenotypically unique cell subpopulations from the inner, middle, and outer compartments of the arterial media. Differences in cell phenotype were demonstrated by morphological appearance and differential expression of muscle-specific proteins. The isolated cell subpopulations exhibited markedly different growth capabilities. Two SMC subpopulations grew slowly in 10% serum and were quiescent in plasma-based medium. The other two cell subpopulations, exhibiting nonmuscle characteristics, grew rapidly in 10% serum and proliferated in plasma-based medium and in response to hypoxia. Certain colonies of the nonmuscle-like cell subpopulations were found to grow autonomously under serum-deprived conditions and to secrete mitogenic factors. Our data, demonstrating that phenotypically distinct cells with enhanced growth potential exist within the normal arterial media, support the idea that these unique cells could contribute selectively to the pathogenesis of vascular disease.


Annual Review of Physiology | 2013

The Adventitia: Essential Regulator of Vascular Wall Structure and Function

Kurt R. Stenmark; Michael E. Yeager; Karim C. El Kasmi; Eva Nozik-Grayck; Evgenia V. Gerasimovskaya; Min Li; Suzette R. Riddle; Maria G. Frid

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.


Journal of Immunology | 2011

Emergence of Fibroblasts with a Proinflammatory Epigenetically Altered Phenotype in Severe Hypoxic Pulmonary Hypertension

Min Li; Suzette R. Riddle; Maria G. Frid; Karim C. El Kasmi; Timothy A. McKinsey; Ronald J. Sokol; Derek Strassheim; Barbara Meyrick; Michael E. Yeager; Amanda Flockton; B. Alexandre McKeon; Douglas D. Lemon; Todd R. Horn; Adil Anwar; Carlos Barajas; Kurt R. Stenmark

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1β, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1997

Smooth Muscle Cell Heterogeneity in Pulmonary and Systemic Vessels Importance in Vascular Disease

Maria G. Frid; Edward C. Dempsey; Anthony G. Durmowicz; Kurt R. Stenmark

Experimental evidence is rapidly accumulating which demonstrates that the arterial media in both pulmonary and systemic vessels is not composed of a phenotypically homogeneous population of smooth muscle cells (SMCs) but rather of heterogeneous subpopulations of cells with unique developmental lineages. In vivo and in vitro observations strongly suggest that marked differences in the phenotype, growth, and matrix-producing capabilities of phenotypically distinct SMC subpopulations exist and that these differences are intrinsic to the cell type. These data also suggest that differential proliferative and matrix-producing capabilities of distinct SMC subpopulations govern, at least in part, the pattern of abnormal cell proliferation and matrix protein synthesis observed in the pathogenesis of vascular disease. Within the pulmonary circulation, the observation that the isolated medial SMC subpopulations exhibit differential proliferative responses to hypoxic exposure is important, since this in vitro cell-model system can now be used to better understand the mechanisms that regulate increased responsiveness of specific medial cell subpopulations to low oxygen concentrations. Our data also support the idea that protein kinase C is likely to be one important determinant of differential cell growth responses to hypoxia. The data also suggest differential involvement of specific arterial SMC subpopulations in the elastogenic responses of the vessel wall to injury. We believe that a better understanding of the mechanisms contributing to the unique behavior of specific arterial cell subpopulations will provide important future directions for therapies aimed at preventing abnormal cell replication and matrix protein synthesis in vascular disease.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment

Danielle L. Burke; Maria G. Frid; Claudia Laura Barberio Kunrath; Vijaya Karoor; Adil Anwar; Brandie D. Wagner; Derek Strassheim; Kurt R. Stenmark

Recent studies demonstrate that sustained hypoxia induces the robust accumulation of leukocytes and mesenchymal progenitor cells in pulmonary arteries (PAs). Since the factors orchestrating hypoxia-induced vascular inflammation are not well-defined, the goal of this study was to identify mediators potentially responsible for recruitment to and retention and differentiation of circulating cells within the hypoxic PA. We analyzed mRNA expression of 44 different chemokine/chemokine receptor, cytokine, adhesion, and growth and differentiation genes in PAs obtained via laser capture microdissection in adjacent lung parenchyma and in systemic arteries by RT-PCR at several time points of hypoxic exposure (1, 7, and 28 days) in Wistar-Kyoto rats. Analysis of inflammatory cell accumulation and protein expression of selected genes was concomitantly assessed by immunochemistry. We found that hypoxia induced progressive accumulation of monocytes and dendritic cells in the vessel wall with few T cells and no B cells or neutrophils. Upregulation of stromal cell-derived factor-1 (SDF-1), VEGF, growth-related oncogene protein-alpha (GRO-alpha), C5, ICAM-1, osteopontin (OPN), and transforming growth factor-beta (TGF-beta) preceded mononuclear cell influx. With time, a more complex pattern of gene expression developed with persistent upregulation of adhesion molecules (ICAM-1, VCAM-1, and OPN) and monocyte/fibrocyte growth and differentiation factors (TGF-beta, endothelin-1, and 5-lipoxygenase). On return to normoxia, expression of many genes (including SDF-1, monocyte chemoattractant protein-1, C5, ICAM-1, and TGF-beta) rapidly returned to control levels, changes that preceded the disappearance of monocytes and reversal of vascular remodeling. In conclusion, sustained hypoxia leads to the development of a complex, PA-specific, proinflammatory microenvironment capable of promoting recruitment, retention, and differentiation of circulating monocytic cell populations that contribute to vascular remodeling.


Circulation Research | 2014

MicroRNA-124 Controls the Proliferative, Migratory, and Inflammatory Phenotype of Pulmonary Vascular Fibroblasts

Wang D; Zhang H; Li M; Maria G. Frid; Flockton Ar; McKeon Ba; Michael E. Yeager; Fini Ma; Nicholas W. Morrell; Soni Savai Pullamsetti; Velegala S; Werner Seeger; Timothy A. McKinsey; Carmen C. Sucharov; Kurt R. Stenmark

Rationale: Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. Objective: We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. Methods and Results: We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti–miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract–binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3′ untranslated region of polypyrimidine tract–binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Conclusions: Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.

Collaboration


Dive into the Maria G. Frid's collaboration.

Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Suzette R. Riddle

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Min Li

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Karim C. El Kasmi

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Adil Anwar

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Amanda Flockton

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge