Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzette R. Riddle is active.

Publication


Featured researches published by Suzette R. Riddle.


Annual Review of Physiology | 2013

The Adventitia: Essential Regulator of Vascular Wall Structure and Function

Kurt R. Stenmark; Michael E. Yeager; Karim C. El Kasmi; Eva Nozik-Grayck; Evgenia V. Gerasimovskaya; Min Li; Suzette R. Riddle; Maria G. Frid

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.


Journal of Immunology | 2011

Emergence of Fibroblasts with a Proinflammatory Epigenetically Altered Phenotype in Severe Hypoxic Pulmonary Hypertension

Min Li; Suzette R. Riddle; Maria G. Frid; Karim C. El Kasmi; Timothy A. McKinsey; Ronald J. Sokol; Derek Strassheim; Barbara Meyrick; Michael E. Yeager; Amanda Flockton; B. Alexandre McKeon; Douglas D. Lemon; Todd R. Horn; Adil Anwar; Carlos Barajas; Kurt R. Stenmark

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1β, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.


Mammalian Genome | 2004

The rat Ruby ( R) locus is Rab38: identical mutations in Fawn-hooded and Tester-Moriyama rats derived from an ancestral Long Evans rat sub-strain.

Naoki Oiso; Suzette R. Riddle; Tadao Serikawa; Takashi Kuramoto; Richard A. Spritz

AbstractHermansky-Pudlak syndrome (HPS) is a group of rare, recessive disorders in which oculocutaneous albinism, progressive pulmonary fibrosis, bleeding diathesis, and other abnormalities result from defective biogenesis of multiple cytoplasmic organelles. Seven different HPS genes are known in humans; in mouse, at least 16 loci are associated with HPS-like mutant phenotypes. In the rat, only two HPS models are known, Fawn-hooded (FH) and Tester Moriyama (TM), non-complementing strains in which HPS-like hypopigmentation and platelet storage pool deficiency result from a mutation of the Ruby (red eyed dilution; R) locus on Chromosome (Chr) 1. We have identified the R locus as the Rab38 gene, establishing that rat R is homologous to mouse chocolate (cht). Further, we show that FH and TM rats have identical Rab38 Met1Ile mutations, occurring on an identical Chr 1 marker allele haplotype, indicating that these two strains derive from a common ancestor. This ancestor appears to have been a sub-strain of the outbred Long Evans (LE) strain, and several modern LE sub-strains carry the Rab38 Met1Ile R mutation on the same Chr 1 marker haplotype. These findings have significant implications for the many past and ongoing studies that involve the FH and LE-derivative rat strains. Hermansky-Pudlak syndrome (HPS; MIM 203300) is a group of autosomal recessive diseases in which oculocutaneous albinism (OCA), progressive and fatal pulmonary fibrosis, and bleeding diathesis due to platelet storage pool deficiency result from defects in the biogenesis of specific cytoplasmic organelles and granules: melanosomes, lysosomes, and platelet dense granules (reviewed in Spritz 1999, 2000; Spritz et al. 2003). In humans, seven different HPS genes are known (Oh et al. 1996; Dell’Angelica et al. 1999; Anikster et al. 2001; Suzuki et al. 2002; Li et al. 2003; Zhang et al. 2003). In the mouse, at least 16 loci associated with HPS-like mutant phenotypes are known, seven of which are homologous to the human HPS loci (Swank et al. 1998; Bennett and Lamoreux 2003).


Journal of Immunology | 2014

Adventitial Fibroblasts Induce a Distinct Proinflammatory/Profibrotic Macrophage Phenotype in Pulmonary Hypertension

Karim C. El Kasmi; Steven C. Pugliese; Suzette R. Riddle; Jens M. Poth; Aimee L. Anderson; Maria G. Frid; Min Li; Soni Savai Pullamsetti; Rajkumar Savai; Maria A. Nagel; Mehdi A. Fini; Brian B. Graham; Rubin M. Tuder; Jacob E. Friedman; Holger K. Eltzschig; Ronald J. Sokol; Kurt R. Stenmark

Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13–STAT6 and TLR–MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPβ or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13–STAT6–mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6–activated STAT3, HIF1α, and C/EBPβ signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPβ or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

PI3K, Rho, and ROCK play a key role in hypoxia-induced ATP release and ATP-stimulated angiogenic responses in pulmonary artery vasa vasorum endothelial cells

Heather Woodward; Adil Anwar; Suzette R. Riddle; Laimute Taraseviciene-Stewart; Miguel Fragoso; Kurt R. Stenmark; Evgenia V. Gerasimovskaya

We recently reported that vasa vasorum expansion occurs in the pulmonary artery (PA) adventitia of chronically hypoxic animals and that extracellular ATP is a pro-angiogenic factor for isolated vasa vasorum endothelial cells (VVEC). However, the sources of extracellular ATP in the PA vascular wall, as well as the molecular mechanisms underlying its release, remain elusive. Studies were undertaken to explore whether VVEC release ATP in response to hypoxia and to determine signaling pathways involved in this process. We found that hypoxia (1-3% O2) resulted in time- and O2-dependent ATP release from VVEC. Preincubation with the inhibitors of vesicular transport (monensin, brefeldin A, and N-ethylmaleimide) significantly decreased ATP accumulation in the VVEC conditioned media, suggesting that hypoxia-induced ATP release occurs through vesicular exocytosis. Additionally, both hypoxia and exogenously added ATP resulted in the activation of PI3K and accumulation of GTP-bound RhoA in a time-dependent manner. Pharmacological inhibition of PI3K and ROCK or knockout of RhoA by small interfering RNA significantly abolished hypoxia-induced ATP release from VVEC. Moreover, RhoA and ROCK play a critical role in ATP-induced increases in VVEC DNA synthesis, migration, and tube formation, indicating a functional contribution of PI3K, Rho, and ROCK to both the autocrine mechanism of ATP release and ATP-mediated angiogenic activation of VVEC. Taken together, our findings provide novel evidence for the signaling mechanisms that link hypoxia-induced increases in extracellular ATP and vasa vasorum expansion.


Circulation | 2016

Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1

Min Li; Suzette R. Riddle; Hui Zhang; Angelo D’Alessandro; Amanda Flockton; Natalie J. Serkova; Kirk C. Hansen; Radu Moldvan; B. Alexandre McKeon; Maria G. Frid; Sushil Kumar; Hong Li; Hongbing Liu; Angela Caánovas; Juan F. Medrano; Milton G. Thomas; Dijana Iloska; Lydie Plecitá-Hlavatá; Petr Ježek; Soni Savai Pullamsetti; Mehdi A. Fini; Karim C. El Kasmi; QingHong Zhang; Kurt R. Stenmark

Background: Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). Methods: RNA sequencing, quantitative polymerase chain reaction,13C–nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry–based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD+ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. Results: We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature. Conclusions: CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.


Nature Communications | 2015

Increased prevalence of EPAS1 variant in cattle with high-altitude pulmonary hypertension

John H. Newman; Timothy N. Holt; Joy D. Cogan; Bethany Womack; John A. Phillips; Chun Li; Zachary Kendall; Kurt R. Stenmark; Milton G. Thomas; R. Dale Brown; Suzette R. Riddle; James West; Rizwan Hamid

High-altitude pulmonary hypertension (HAPH) has heritable features and is a major cause of death in cattle in the Rocky Mountains, USA. Although multiple genes are likely involved in the genesis of HAPH, to date no major gene variant has been identified. Using whole-exome sequencing, we report the high association of an EPAS1 (HIF2α) double variant in the oxygen degradation domain of EPAS1 in Angus cattle with HAPH, mean pulmonary artery pressure >50 mm Hg in two independent herds. Expression analysis shows upregulation of 26 of 27 HIF2α target genes in EPAS1 carriers with HAPH. Of interest, this variant appears to be prevalent in lowland cattle, in which 41% of a herd of 32 are carriers, but the variant may only have a phenotype when the animal is hypoxemic at altitude. The EPAS1 variant will be a tool to determine the cells and signalling pathways leading to HAPH.


Nature Communications | 2017

TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma - and hypoxia-induced pulmonary hypertension

Rahul Kumar; Claudia Mickael; Biruk Kassa; Liya Gebreab; Jeffrey C. Robinson; Daniel E. Koyanagi; Linda Sanders; Lea Barthel; Christina A. Meadows; Daniel Fox; David M. Irwin; Min Li; B. Alexandre McKeon; Suzette R. Riddle; R. Dale Brown; Leslie E. Morgan; Christopher M. Evans; Daniel Hernandez-Saavedra; Angela Bandeira; James P. Maloney; Todd M. Bull; William J. Janssen; Kurt R. Stenmark; Rubin M. Tuder; Brian B. Graham

Pulmonary arterial hypertension (PAH) is an obstructive disease of the precapillary pulmonary arteries. Schistosomiasis-associated PAH shares altered vascular TGF-β signalling with idiopathic, heritable and autoimmune-associated etiologies; moreover, TGF-β blockade can prevent experimental pulmonary hypertension (PH) in pre-clinical models. TGF-β is regulated at the level of activation, but how TGF-β is activated in this disease is unknown. Here we show TGF-β activation by thrombospondin-1 (TSP-1) is both required and sufficient for the development of PH in Schistosoma-exposed mice. Following Schistosoma exposure, TSP-1 levels in the lung increase, via recruitment of circulating monocytes, while TSP-1 inhibition or knockout bone marrow prevents TGF-β activation and protects against PH development. TSP-1 blockade also prevents the PH in a second model, chronic hypoxia. Lastly, the plasma concentration of TSP-1 is significantly increased in subjects with scleroderma following PAH development. Targeting TSP-1-dependent activation of TGF-β could thus be a therapeutic approach in TGF-β-dependent vascular diseases.


Circulation | 2017

Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis

Hui Zhang; Daren Wang; Min Li; Lydie Plecitá-Hlavatá; Angelo D’Alessandro; Jan Tauber; Suzette R. Riddle; Sushil Kumar; Amanda Flockton; B. Alexandre McKeon; Maria G. Frid; Julie A. Reisz; Paola Caruso; Karim C. El Kasmi; Petr Ježek; Nicholas W. Morrell; Cheng-Jun Hu; Kurt R. Stenmark

Background: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. Methods: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry–based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. Results: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1&bgr; expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. Conclusions: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.


Journal of Immunology | 2017

A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension

Steven C. Pugliese; Sushil Kumar; William J. Janssen; Brian B. Graham; Maria G. Frid; Suzette R. Riddle; Karim C. El Kasmi; Kurt R. Stenmark

Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases.

Collaboration


Dive into the Suzette R. Riddle's collaboration.

Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Maria G. Frid

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Min Li

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Karim C. El Kasmi

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Adil Anwar

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Amanda Flockton

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald J. Sokol

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Aimee L. Anderson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

B. Alexandre McKeon

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge