Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh Kumar Swaminathan is active.

Publication


Featured researches published by Suresh Kumar Swaminathan.


Nature | 2007

Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation

Guillermo Barreto; Andrea Schäfer; Joachim Marhold; Dirk Stach; Suresh Kumar Swaminathan; Vikas Handa; Gabi Döderlein; Nicole Maltry; Wei Wu; Frank Lyko; Christof Niehrs

DNA methylation is an epigenetic modification that is essential for gene silencing and genome stability in many organisms. Although methyltransferases that promote DNA methylation are well characterized, the molecular mechanism underlying active DNA demethylation is poorly understood and controversial. Here we show that Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha), a nuclear protein involved in maintenance of genomic stability, DNA repair and suppression of cell growth, has a key role in active DNA demethylation. Gadd45a overexpression activates methylation-silenced reporter plasmids and promotes global DNA demethylation. Gadd45a knockdown silences gene expression and leads to DNA hypermethylation. During active demethylation of oct4 in Xenopus laevis oocytes, Gadd45a is specifically recruited to the site of demethylation. Active demethylation occurs by DNA repair and Gadd45a interacts with and requires the DNA repair endonuclease XPG. We conclude that Gadd45a relieves epigenetic gene silencing by promoting DNA repair, which erases methylation marks.


Biomaterials | 2010

The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance.

Yogesh Patil; Suresh Kumar Swaminathan; Tanmoy Sadhukha; Linan Ma; Jayanth Panyam

Overexpression of drug efflux transporters such as P-glycoprotein (P-gp) enables cancer cells to develop resistance to multiple anticancer drugs. Functional inhibitors of P-gp have shown promising efficacy in early clinical trials, but their long-term safety is yet to be established. A novel approach to overcome drug resistance is to use siRNA-mediated RNA interference to silence the expression of the efflux transporter. Because P-gp plays an important role in the physiological regulation of endogenous and xenobiotic compounds in the body, it is important to deliver P-gp targeted siRNA and anticancer drug specifically to tumor cells. Further, for optimal synergy, both the drug and siRNA may need to be temporally colocalized in the tumor cells. In the current study, we investigated the effectiveness of simultaneous and targeted delivery of anticancer drug, paclitaxel, along with P-gp targeted siRNA, using poly(D,L-lactide-co-glycolide) nanoparticles to overcome tumor drug resistance. Nanoparticles were surface functionalized with biotin for active tumor targeting. Dual agent nanoparticles encapsulating the combination of paclitaxel and P-gp targeted siRNA showed significantly higher cytotoxicity in vitro than nanoparticles loaded with paclitaxel alone. Enhanced therapeutic efficacy of dual agent nanoparticles could be correlated with effective silencing of the MDR1 gene that encodes for P-gp and with increased accumulation of paclitaxel in drug-resistant tumor cells. In vivo studies in a mouse model of drug-resistant tumor demonstrated significantly greater inhibition of tumor growth following treatment with biotin-functionalized nanoparticles encapsulating both paclitaxel and P-gp targeted siRNA at a paclitaxel dose that was ineffective in the absence of gene silencing. These results suggest that that the combination of P-gp gene silencing and cytotoxic drug delivery using targeted nanoparticles can overcome tumor drug resistance.


Cancer Research | 2010

Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention.

Komal Shahani; Suresh Kumar Swaminathan; Diana Freeman; Angela Blum; Linan Ma; Jayanth Panyam

Poor oral bioavailability limits the use of curcumin and other dietary polyphenols in the prevention and treatment of cancer. Minimally invasive strategies that can provide effective and sustained tissue concentrations of these agents will be highly valuable tools in the fight against cancer. The objective of this study was to investigate the use of an injectable sustained release microparticle formulation of curcumin as a novel approach to breast cancer chemoprevention. A biodegradable and biocompatible polymer, poly(d,l-lactide-co-glycolide), was used to fabricate curcumin microparticles. When injected s.c. in mice, a single dose of microparticles sustained curcumin levels in the blood and other tissues for nearly a month. Curcumin levels in the lungs and brain, frequent sites of breast cancer metastases, were 10- to 30-fold higher than that in the blood. Further, curcumin microparticles showed marked anticancer efficacy in nude mice bearing MDA-MB-231 xenografts compared with other controls. Repeated systemic injections of curcumin were not effective in inhibiting tumor growth. Treatment with curcumin microparticles resulted in diminished vascular endothelial growth factor expression and poorly developed tumor microvessels, indicating a significant effect on tumor angiogenesis. These results suggest that sustained delivery of chemopreventives such as curcumin using polymeric microparticles is a promising new approach to cancer chemoprevention and therapy.


Journal of Controlled Release | 2013

CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer

Suresh Kumar Swaminathan; Emilie Roger; Udaya Toti; Lin Niu; John R. Ohlfest; Jayanth Panyam

Expression of the membrane protein CD133 marks a subset of cancer cells with drug resistant phenotype and enhanced tumor initiating ability in xenotransplantation assays. Because drug resistance and tumor relapse are significant problems, approaches to eliminate these cells are urgently needed. As a step towards achieving this goal, we developed polymeric nanoparticles targeting CD133 by conjugating an anti-CD133 monoclonal antibody to nanoparticles formulated using poly(D,L lactide-co-glycolide) polymer. Nanoparticles were loaded with paclitaxel, a microtubule-stabilizing anticancer agent, as well as with 6-coumarin, a fluorescent probe. CD133-targeted nanoparticles (CD133NPs) were efficiently internalized by Caco-2 cells, which abundantly express CD133 (>9-fold higher uptake than non-targeted control nanoparticles). The effectiveness of CD133NPs in reducing tumor initiating cell (TIC) fraction was investigated using mammosphere formation and soft-agar colony formation assays. Free paclitaxel treatment was not effective in decreasing the TIC population relative to untreated control, whereas CD133NPs effectively decreased the number of mammospheres and colonies formed. In vivo studies in the MDA-MB-231 xenograft model showed that free paclitaxel was initially effective in inhibiting tumor growth but the tumors rebounded rapidly once the treatment was stopped. Tumor regrowth was significantly lower when paclitaxel was delivered through CD133NPs (tumor volume was 518.6±228 vs. 1370.9±295mm(3) for free paclitaxel at 63days; P<0.05). Our studies thus show that encapsulation of paclitaxel in CD133NPs results in a significant decrease in the TIC population and improved therapeutic efficacy compared to that with free paclitaxel treatment. These results indicate the potential of targeting anticancer therapeutics to CD133+ cells for reducing tumor recurrence.


Journal of Immunological Methods | 2010

Identification of a novel monoclonal antibody recognizing CD133.

Suresh Kumar Swaminathan; Michael R. Olin; Colleen L. Forster; Karen Santa Cruz; Jayanth Panyam; John R. Ohlfest

Human CD133 (prominin-1), a cell surface glycoprotein, is used as a marker of hematopoietic and neural stem cells. Antibodies that recognize a glycosylation-dependent CD133 epitope have been extensively used for enrichment of tumor initiating cells in a variety of cancers. These currently available antibodies are restricted for use in only a subset of biological assays. We have generated a novel anti-human CD133 monoclonal antibody, using a recombinant protein consisting of highly immunogenic amino acid residues selected from the native CD133 protein as an immunogen. The antibody (identified as clone 7) specifically recognizes the CD133 protein in a variety of immunological applications including Western blot, immunofluorescence, flow cytometry and immunohistochemistry. Further, clone 7 specifically recognizes an unmodified CD133 extracellular domain, and not its glycosylated epitope. In conclusion, the specificity and usefulness in a wide range of applications suggest that clone 7 could be a valuable tool to identify CD133 positive cells as well as to target them for therapy.


International Journal of Nanomedicine | 2014

Synthesis, characterization, and evaluation of poly (D,L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy.

Sumit Arora; Suresh Kumar Swaminathan; Ameya R. Kirtane; Sanjeev K. Srivastava; Arun Bhardwaj; Seema Singh; Jayanth Panyam; Ajay P. Singh

MicroRNAs are small (18–22 nucleotide long) noncoding RNAs that play important roles in biological processes through posttranscriptional regulation of gene expression. Their aberrant expression and functional significance are reported in several human malignancies, including pancreatic cancer. Recently, we identified miR-150 as a novel tumor suppressor microRNA in pancreatic cancer. Furthermore, expression of miR-150 was downregulated in the majority of tumor cases, suggesting that its restoration could serve as an effective approach for pancreatic cancer therapy. In the present study, we developed a nanoparticle-based miR-150 delivery system and tested its therapeutic efficacy in vitro. Using double emulsion solvent evaporation method, we developed a poly (D,L-lactide-co-glycolide) (PLGA)-based nanoformulation of miR-150 (miR-150-NF). Polyethyleneimine (a cationic polymer) was incorporated in PLGA matrix to increase the encapsulation of miR-150. Physical characterization of miR-150-NF demonstrated that these nanoparticles had high encapsulation efficiency (~78%) and exhibited sustained release profile. Treatment of pancreatic cancer cells with miR-150-NF led to efficient intracellular delivery of miR-150 mimics and caused significant downregulation of its target gene (MUC4) expression. Inhibition of MUC4 correlated with a concomitant decrease in the expression of its interacting partner, HER2, and repression of its downstream signaling. Furthermore, treatment of pancreatic cancer cells with miR-150-NF suppressed their growth, clonogenicity, motility, and invasion. Together, these findings suggest that PLGA-based nanoformulation could potentially serve as a safe and effective nanovector platform for miR-150 delivery to pancreatic tumor cells.


Biomaterials | 2014

Multimodal nanoprobes to target cerebrovascular amyloid in Alzheimer's disease brain.

Kristen M. Jaruszewski; Geoffry L. Curran; Suresh Kumar Swaminathan; Jens T. Rosenberg; Samuel C. Grant; Subramanian Ramakrishnan; Val J. Lowe; Joseph F. Poduslo; Karunya K. Kandimalla

Cerebral amyloid angiopathy (CAA) results from the accumulation of Aβ proteins primarily within the media and adventitia of small arteries and capillaries of the cortex and leptomeninges. CAA affects a majority of Alzheimers disease (AD) patients and is associated with a rapid decline in cognitive reserve. Unfortunately, there is no pre-mortem diagnosis available for CAA. Furthermore, treatment options are few and relatively ineffective. To combat this issue, we have designed nanovehicles (nanoparticles-IgG4.1) capable of targeting cerebrovascular amyloid (CVA) and serving as early diagnostic and therapeutic agents. These nanovehicles were loaded with Gadolinium (Gd) based (Magnevist(®)) magnetic resonance imaging contrast agents or single photon emission computed tomography (SPECT) agents, such as (125)I. In addition, the nanovehicles carry either anti-inflammatory and anti-amyloidogenic agents such as curcumin or immunosuppressants such as dexamethasone, which were previously shown to reduce cerebrovascular inflammation. Owing to the anti-amyloid antibody (IgG4.1) grafted on the surface, the nanovehicles are capable of specifically targeting CVA deposits. The nanovehicles effectively marginate from the blood flow to the vascular wall as determined by using quartz crystal microbalance with dissipation monitoring (QCM-D) technology. They demonstrate excellent distribution to the brain vasculature and target CVA, thus providing MRI and SPECT contrast specific to the CVA in the brain. In addition, they also display the potential to carry therapeutic agents to reduce cerebrovascular inflammation associated with CAA, which is believed to trigger hemorrhage in CAA patients.


Molecular Pharmaceutics | 2014

Enhanced Photodynamic Therapy and Effective Elimination of Cancer Stem Cells Using Surfactant–Polymer Nanoparticles

Marina Usacheva; Suresh Kumar Swaminathan; Ameya R. Kirtane; Jayanth Panyam

Photodynamic therapy is a potentially curative treatment for various types of cancer. It involves energy transfer from an excited photosensitizer to surrounding oxygen molecules to produce cytotoxic singlet oxygen species, a process termed as type II reaction. The efficiency of photodynamic therapy is greatly reduced because of the reduced levels of oxygen, often found in tumor microenvironments that also house cancer stem cells, a subpopulation of tumor cells that are characterized by enhanced tumorigenicity and resistance to conventional therapies. We show here that encapsulation of a photosensitizer, methylene blue, in alginate-Aerosol OT nanoparticles leads to an increased production of reactive oxygen species (ROS) under both normoxic and hypoxic conditions. ROS generation was found to depend on the interaction of the cationic photosensitizer with the anionic alginate polymer. Dye-polymer interaction was characterized by formation of methylene blue dimers, potentially enabling electron transfer and a type I photochemical reaction that is less sensitive to environmental oxygen concentration. We also find that nanoparticle encapsulated methylene blue has the capacity to eliminate cancer stem cells under hypoxic conditions, an important goal of current cancer therapy.


Drug Delivery and Translational Research | 2013

Immunotoxin targeting CD133+ breast carcinoma cells

John R. Ohlfest; David M. Zellmer; Jayanth Panyam; Suresh Kumar Swaminathan; Seunguk Oh; Nate N. Waldron; Shoko Toma; Daniel A. Vallera

CD133 expression enriches for tumor-initiating cells and is a negative prognostic factor in numerous cancers. We previously developed an immunotoxin against CD133 by fusing a gene fragment encoding the scFv portion of an anti-CD133 antibody to a gene fragment encoding deimmunized PE38KDEL. The resulting fusion protein, dCD133KDEL, demonstrated potent antitumor activity following intratumoral delivery into head neck cell carcinoma xenografts. However, the efficacy against other tumors and the tolerability of systemic administration remained unclear. The purpose of this study was to evaluate the tolerability and efficacy of dCD133KDEL in a systemic human breast carcinoma model. Time course viability studies showed that dCD133KDEL selectively inhibited MDA-MB-231 ductal breast carcinoma cells that contained a minority CD133+ subpopulation, implicating CD133+ cells as a source for self-renewal within this cell line. Furthermore, systemic administration of dCD133KDEL caused regression or inhibition of tumor growth in mice bearing an intrasplenic MDA-MB-231 tumor challenge as a model for metastatic disease. In the same model, combined therapy with dCD133KDEL and another immunotoxin designed to target the bulk tumor mass was the most effective therapy, supporting the idea that such combination therapies might better address tumor heterogeneity. dCD133KDEL shows promise as a therapeutic agent and as a biologic tool to study cancer stem cells.


Drug Delivery and Translational Research | 2013

Identification and characterization of a novel scFv recognizing human and mouse CD133

Suresh Kumar Swaminathan; Lin Niu; Nate N. Waldron; Steve Kalscheuer; David M. Zellmer; Michael R. Olin; John R. Ohlfest; Daniel A. Vallera; Jayanth Panyam

CD133, also known as Prominin-1, is expressed on stem cells present in many tissues and tumors. In this work, we have identified and characterized a single-chain variable fragment (scFv) for the efficient and specific recognition of CD133. Phage display was used to develop the scFv from a previously reported anti-CD133 hybridoma clone 7, which was capable of recognizing both glycosylated and non-glycosylated forms of human CD133. The scFv immunostained CD133+ Caco-2 cells, but not CD133−/low U87 cells. Significantly, it immunostained CD133− cells transiently transfected with the mouse CD133 gene as well as CD133+ mouse cells. Co-immunostaining studies in mouse bone marrow cells, using anti-CD133 scFv-FITC and anti-mouse CD133-PE (clone 13A4) commercial antibody, indicated that the epitopes recognized by these reagents partially overlap. Taken together, these results suggest that the scFv can recognize mouse CD133 protein in addition to recognizing human CD133. This new scFv is expected to be valuable both as a molecular diagnostic reagent for identifying CD133+ cells and as a ligand for targeting therapeutics to CD133+ tumor-initiating cells.

Collaboration


Dive into the Suresh Kumar Swaminathan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay P. Singh

University of South Alabama

View shared research outputs
Researchain Logo
Decentralizing Knowledge