Katarzyna Dudek
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katarzyna Dudek.
Molecular Ecology Resources | 2014
Piotr Zieliński; Michał Stuglik; Katarzyna Dudek; Mateusz Konczal; W. Babik
DNA sequences derived from multiple regions of the nuclear genome are essential for historical inferences in the fields of phylogeography and phylogenetics. The appropriate markers should be single‐copy, variable, easy to amplify from multiple samples and easy to sequence using high‐throughput technologies. This may be difficult to achieve for species lacking sequenced genomes and particularly challenging for species possessing large genomes, which consist mostly of repetitive sequences. Here, we present a cost‐effective, broadly applicable framework for designing, validating and high‐throughput sequencing of multiple markers in nonmodel species without sequenced genomes. We demonstrate its utility in two closely related species of newts, representatives of urodeles, a vertebrate group characterized by large genomes. We show that over 80 markers, c. 600 bp each, developed mainly from 3′ untranslated transcript regions (3′UTR) may be effectively multiplexed and sequenced. Data are further processed using standard, freely available bioinformatic tools, producing phase‐resolved sequences. The approach does not require barcoded PCR primers, and the cost of library preparation is independent of the number of markers investigated. We hope that this approach will be of broad interest for researchers working at the interface of population genetics and phylogenetics, exploring deep intraspecific genetic structure, species boundaries and phylogeographies of closely related species.
PLOS ONE | 2014
Piotr Zieliński; Katarzyna Dudek; Michał Stuglik; Marcin Liana; Wiesław Babik
Genetic variation within species is commonly structured in a hierarchical manner which may result from superimposition of processes acting at different spatial and temporal scales. In organisms of limited dispersal ability, signatures of past subdivision are detectable for a long time. Studies of contemporary genetic structure in such taxa inform about the history of isolation, range changes and local admixture resulting from geographically restricted hybridization with related species. Here we use a set of 139 transcriptome-derived, unlinked nuclear single nucleotide polymorphisms (SNP) to assess the genetic structure of the Carpathian newt (Lissotriton montandoni, Lm) and introgression from its congener, the smooth newt (L. vulgaris, Lv). Two substantially differentiated groups of Lm populations likely originated from separate refugia, both located in the Eastern Carpathians. The colonization of the present range in north-western and south-western directions was accompanied by a modest loss of variation; admixture between the two groups has occurred in the middle of the Eastern Carpathians. Local, apparently recent introgression of Lv alleles into several Lm populations was detected, demonstrating increased power for admixture detection in comparison to a previous study based on a limited number of microsatellite markers. The level of introgression was higher in Lm populations classified as admixed than in syntopic populations. We discuss the possible causes and propose further tests to distinguish between alternatives. Several outlier loci were identified in tests of interspecific differentiation, suggesting genomic heterogeneity of gene flow between species.
Genome Biology and Evolution | 2015
Wiesław Babik; Katarzyna Dudek; Anna Fijarczyk; Maciej Pabijan; Michał Stuglik; Rafał Szkotak; Piotr Zieliński
Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity.
Molecular Phylogenetics and Evolution | 2017
Maciej Pabijan; Piotr Zieliński; Katarzyna Dudek; Michał Stuglik; Wiesław Babik
Because reproductive isolation often evolves gradually, differentiating lineages may retain the potential for genetic exchange for prolonged periods, providing an opportunity to quantify and to understand the fundamental role of gene flow during speciation. Here we delimit evolutionary lineages, reconstruct the phylogeny and infer gene flow in newts of the Lissotriton vulgaris species complex based on 74 nuclear markers sampled from 127 localities. We demonstrate that distinct lineages along the speciation continuum in newts exchange nontrivial amounts of genes, affecting their evolutionary trajectories. By integrating a wide array of methods, we delimit nine evolutionary lineages and show that two principal factors have driven their genetic differentiation: time since the last common ancestor determining levels of shared ancestral polymorphism, and shifts in geographic distributions determining the extent of secondary contact. Post-divergence gene flow, indicative of evolutionary non-independence, has been most extensive in Central Europe, while four southern European lineages have acquired the population-genetic hallmarks of independent species (L. graecus, L. kosswigi, L. lantzi, L. schmidtleri). We obtained strong statistical support for widespread mtDNA introgression following secondary contact, previously suggested by discordance between mtDNA phylogeny and morphology. Our study reveals long-term evolutionary persistence of evolutionary lineages that may periodically exchange genes with one another: although some of these lineages may become extinct or fuse, others will acquire complete reproductive isolation and will carry signatures of this complex history in their genomes.
Scientific Reports | 2016
Marta Niedzicka; Anna Fijarczyk; Katarzyna Dudek; Michał Stuglik; Wiesław Babik
Applications that require resequencing of hundreds or thousands of predefined genomic regions in numerous samples are common in studies of non-model organisms. However few approaches at the scale intermediate between multiplex PCR and sequence capture methods are available. Here we explored the utility of Molecular Inversion Probes (MIPs) for the medium-scale targeted resequencing in a non-model system. Markers targeting 112 bp of exonic sequence were designed from transcriptome of Lissotriton newts. We assessed performance of 248 MIP markers in a sample of 85 individuals. Among the 234 (94.4%) successfully amplified markers 80% had median coverage within one order of magnitude, indicating relatively uniform performance; coverage uniformity across individuals was also high. In the analysis of polymorphism and segregation within family, 77% of 248 tested MIPs were confirmed as single copy Mendelian markers. Genotyping concordance assessed using replicate samples exceeded 99%. MIP markers for targeted resequencing have a number of advantages: high specificity, high multiplexing level, low sample requirement, straightforward laboratory protocol, no need for preparation of genomic libraries and no ascertainment bias. We conclude that MIP markers provide an effective solution for resequencing targets of tens or hundreds of kb in any organism and in a large number of samples.
Molecular Ecology | 2016
Piotr Zieliński; Krystyna Nadachowska-Brzyska; Katarzyna Dudek; W. Babik
Information about demographic history is essential for the understanding of the processes of divergence and speciation. Patterns of genetic variation within and between closely related species provide insights into the history of their interactions. Here, we investigated historical demography and genetic exchange between the Carpathian (Lissotriton montandoni, Lm) and smooth (L. vulgaris, Lv) newts. We combine an extensive geographical sampling and multilocus nuclear sequence data with the approximate Bayesian computation framework to test alternative scenarios of divergence and reconstruct the temporal and spatial pattern of gene flow between species. A model of recent (last glacial period) interspecific gene flow was favoured over alternative models. Thus, despite the relatively old divergence (4–6 mya) and presumably long periods of isolation, the species have retained the ability to exchange genes. Nevertheless, the low migration rates (ca. 10−6 per gene copy per generation) are consistent with strong reproductive isolation between the species. Models allowing demographic changes were favoured, suggesting that the effective population sizes of both species at least doubled as divergence reaching the current ca. 0.2 million in Lm and 1 million in Lv. We found asymmetry in rates of interspecific gene flow between Lm and one evolutionary lineage of Lv. We suggest that intraspecific polymorphism for hybrid incompatibilities segregating within Lv could explain this pattern and propose further tests to distinguish between alternative explanations. Our study highlights the importance of incorporating intraspecific genetic structure into the models investigating the history of divergence.
Genome Biology and Evolution | 2016
Anna Fijarczyk; Katarzyna Dudek; Wiesław Babik
Host–pathogen interactions may result in either directional selection or in pressure for the maintenance of polymorphism at the molecular level. Hence signatures of both positive and balancing selection are expected in immune genes. Because both overall selective pressure and specific targets may differ between species, large-scale population genomic studies are useful in detecting functionally important immune genes and comparing selective landscapes between taxa. Such studies are of particular interest in amphibians, a group threatened worldwide by emerging infectious diseases. Here, we present an analysis of polymorphism and divergence of 634 immune genes in two lineages of Lissotriton newts: L. montandoni and L. vulgaris graecus. Variation in newt immune genes has been shaped predominantly by widespread purifying selection and strong evolutionary constraint, implying long-term importance of these genes for functioning of the immune system. The two evolutionary lineages differ in the overall strength of purifying selection which can partially be explained by demographic history but may also signal differences in long-term pathogen pressure. The prevalent constraint notwithstanding, 23 putative targets of positive selection and 11 putative targets of balancing selection were identified. The latter were detected by composite tests involving the demographic model and further validated in independent population samples. Putative targets of balancing selection encode proteins which may interact closely with pathogens but include also regulators of immune response. The identified candidates will be useful for testing whether genes affected by balancing selection are more prone to interspecific introgression than other genes in the genome.
G3: Genes, Genomes, Genetics | 2017
Marta Niedzicka; Katarzyna Dudek; Anna Fijarczyk; Piotr Zieliński; Wiesław Babik
Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni × L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker). It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD) was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.
Proceedings of the Royal Society B: Biological Sciences | 2018
Anna Fijarczyk; Katarzyna Dudek; Marta Niedzicka; Wiesław Babik
The importance of interspecific introgression as a source of adaptive variation is increasingly recognized. Theory predicts that beneficial genetic variants cross species boundaries easily even when interspecific hybridization is rare and gene flow is strongly constrained throughout the genome. However, it remains unclear whether certain classes of genes are particularly prone to adaptive introgression. Genes affected by balancing selection (BS) may constitute such a class, because forms of BS that favour novel, initially rare alleles, should facilitate introgression. We tested this hypothesis in hybridizing newts by comparing 13 genes with signatures of BS, in particular an excess of common non-synonymous polymorphisms, to the genomic background (154 genes). Parapatric hybridizing taxa were less differentiated in BS candidate genes than more closely related allopatric lineages, while the opposite was observed in the control genes. Coalescent and forward simulations that explored neutral and BS scenarios under isolation and migration showed that processes other than differential gene flow are unlikely to account for this pattern. We conclude that BS, probably involving a form of novel allele advantage, promotes introgression. This mechanism may be a source of adaptively relevant variation in hybridizing species over prolonged periods.
Journal of Biogeography | 2015
Maciej Pabijan; Piotr Zieliński; Katarzyna Dudek; Marta Chloupek; Konstantinos Sotiropoulos; Marcin Liana; Wiesław Babik