W. Babik
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Babik.
Molecular Ecology | 2005
W. Babik; W. Branicki; Jelka Crnobrnja-Isailović; D. Cogălniceanu; I. Sas; K. Olgun; Nikolay A. Poyarkov; Mario García-París; J. W. Arntzen
The newts Triturus vulgaris and Triturus montandoni are sister species that exhibit contrasting levels of intraspecific morphological variation. Triturus vulgaris has a broad Eurasiatic distribution encompassing both formerly glaciated and unglaciated areas and shows substantial morphological differentiation in the southern part of its range, while T. montandoni, confined to the Carpathians, is morphologically uniform. We analysed sequence variation of two mtDNA fragments of the total length of c. 1850 bp in 285 individuals of both species collected from 103 localities. Phylogenetic analysis of 200 unique haplotypes defined 12 major clades, their age estimated at c. 4.5–1.0 million years (Myr). Most of the older clades were found in the southern part of the range, and also in central Europe, mainly in Romania. The distribution of mtDNA clades points to the existence of several glacial refugia, located in the Caucasus region, Anatolia, the Balkan Peninsula, Italy, and more to the north in central Europe. The concordance between mtDNA based phylogeny and the distribution of T. vulgaris subspecies was weak. Triturus montandoni haplotypes did not form a monophyletic group. Instead they were found in six clades, in five of them mixed with T. vulgaris haplotypes, most likely as a result of past or ongoing hybridization and multiple introgression of mtDNA from T. vulgaris to T. montandoni. Patterns of sequence variation within clades suggested long‐term demographic stability in the southern groups, moderate and relatively old demographic growth in the populations inhabiting central Europe, and high growth in some of the groups that colonized northern parts of Europe after the last glacial maximum.
Molecular Ecology Resources | 2009
W. Babik; Pierre Taberlet; Maciej Jan Ejsmond; Jacek Radwan
Accurate genotyping of complex systems, such as the major histocompatibility complex (MHC) often requires simultaneous analysis of multiple co‐amplifying loci. Here we explore the utility of the massively parallel 454 sequencing method as a universal tool for genotyping complex MHC systems in nonmodel vertebrates. The power of this approach stems from the use of tagged polymerase chain reaction (PCR) primers to identify individual amplicons which can be simultaneously sequenced to the arbitrarily chosen coverage. However, the error‐prone sequencing technology poses considerable challenges as it may be difficult to discriminate between sequencing errors and true rare alleles; due to complex nature of artefacts and errors, efficient quality control is required. Nevertheless, our study demonstrates the parallel 454 sequencing can be an efficient genotyping platform for MHC and provides an alternative to classical genotyping methods. We introduced procedures to identify the threshold that can be used to reduce number of genotyping errors by eliminating most of artefactual alleles (AA) representing PCR or sequencing errors. Our procedures are based on two expectations: first, that AA should be relatively rare, both overall and on per‐individual basis, and second, that most AA result from errors introduced to sequences of true alleles. In our data set, alleles with an average per‐individual frequency below 3% most likely represented artefacts. This threshold will vary in other applications according to the complexity of the genotyped system. We strongly suggest direct assessment of genotyping error in every experiment by running a fraction of duplicates: individuals amplified in independent PCRs.
Molecular Ecology | 2010
Agnieszka Kloch; W. Babik; Anna Bajer; Edward Siński; Jacek Radwan
The major histocompatibility complex (MHC) genes code for the proteins responsible for pathogen recognition. The MHC class II DRB gene is multiplicated in the bank vole, Myodes glareolus, with different numbers of loci found in different individuals. Possessing large numbers of loci should increase the probability of pathogen recognition, but according to the optimality hypothesis, there is a cost of possessing too many MHC alleles. Using 454 technology, we determined the individual DRB allelic diversity and related it to the load of intestinal parasites in voles collected from three sites separated by a distance of 12 to 27 km. The analysis of six microsatellite loci revealed significant population structure (FST = 0.07). The sites differed significantly in the prevalence and abundance of nematode species as well. We found two significant associations between MHC alleles and the intensity of the infection with the most prevalent nematode, Aspiculuris tetraptera. One of these associations was population‐specific. This result suggests that the directions of selection can differ between populations connected by a low level of gene flow, which may contribute to the maintenance of high DRB allele diversity. In accordance with the optimality hypothesis, individuals with an intermediate number of alleles carried the lowest number of nematode species and had the lowest prevalence of A. tetraptera. However, the intensity of infection with A. tetraptera was linearly and negatively associated with the number of alleles.
Molecular Ecology | 2004
W. Babik; W. Branicki; M. Sandera; S. Litvinchuk; Leo J. Borkin; J. T. Irwin; J. Rafiński
The moor frog Rana arvalis is a lowland species with a broad Eurasiatic distribution, from arctic tundra through forest to the steppe zone. Its present‐day range suggests that glacial refugia of this frog were located outside southern European peninsulas. We studied the species‐wide phylogeographical pattern using sequence variation in a 682 base pairs fragment of mtDNA cytochrome b gene; 223 individuals from 73 localities were analysed. Two main clades, A and B, differing by c. 3.6% sequence divergence were detected. The A clade is further subdivided into two subclades, AI and AII differing by 1.0%. All three lineages are present in the Carpathian Basin (CB), whereas the rest of the species range, including huge expanses of Eurasian lowlands, are inhabited solely by the AI lineage. We infer that AII and B lineages survived several glacial cycles in the CB but did not expand, at least in the present interglacial, to the north. The geographical distribution and genealogical relationships between haplotypes from the AI lineage indicate that this group had two glacial refugia, one located in the eastern part of the CB and the other probably in southern Russia. Populations from both refugia contributed to the colonization of the western part of the range, whereas the eastern part was colonized from the eastern refugium only. The effective population size as evidenced by θML is an order of magnitude higher in the AI lineage than in the AII and B lineages. Demographic expansion was detected in all three lineages.
Molecular Ecology Resources | 2010
W. Babik
Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA‐based methods currently used for genotyping MHC in non‐model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co‐amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems.
Molecular Ecology | 2005
W. Babik; Walter Durka; Jacek Radwan
Major histocompatibility complex (MHC) genes, coding molecules which play an important role in immune response, are the most polymorphic genes known in vertebrates. However, MHC polymorphism in some species is limited. MHC monomorphism at several MHC class I and II loci was previously reported for two neighbouring northern European populations of the Eurasian beaver (Castor fiber) and reduced selection for polymorphism has been hypothesized. Here, we analysed a partial sequence of the second exon of the MHC II DRB locus from seven relict European and Asian beaver populations. We detected 10 unique alleles among 76 beavers analysed. Only a western Siberian population was polymorphic, with four alleles detected in 10 individuals. Each of the remaining populations was fixed for a different allele. Sequences showed considerable divergence, suggesting the long persistence of allelic lineages. A significant excess of nonsynonymous substitutions was detected at the antigen binding sites, indicating that sequence evolution of beaver DRB was driven by positive selection. Current MHC monomorphism in the majority of populations may be the result of the superimposition of the recent bottleneck on pre‐existing genetic structure resulting from population subdivision and differential pathogen pressure.
Molecular Ecology Resources | 2011
Michał Stuglik; Jacek Radwan; W. Babik
Genotyping of multilocus gene families, such as the major histocompatibility complex (MHC), may be challenging because of problems with assigning alleles to loci and copy number variation among individuals. Simultaneous amplification and genotyping of multiple loci may be necessary, and in such cases, next‐generation deep amplicon sequencing offers a great promise as a genotyping method of choice. Here, we describe jMHC, a computer program developed for analysing and assisting in the visualization of deep amplicon sequencing data. Software operates on FASTA files; therefore, output from any sequencing technology may be used. jMHC was designed specifically for MHC studies but it may be useful for analysing amplicons derived from other multigene families or for genotyping other polymorphic systems. The program is written in Java with user‐friendly graphical interface (GUI) and can be run on Microsoft Windows, Linux OS and Mac OS.
Molecular Ecology | 2003
W. Babik; Jacek M. Szymura; J. Rafiński
The smooth and the Montandons newts (Triturus vulgaris and T. montandoni) are genetically similar sister species with highly divergent male secondary sexual traits involved in complex courtship behaviour. Their parapatric ranges overlap at moderate elevations in the Carpathian Mountains where they hybridize readily. Here we present a detailed study of genetic and morphological variation in populations from the area of sympatry. Analysis of variation at seven nuclear markers, mtDNA and male sexual secondary traits was complemented with an ecological survey of breeding sites characteristics. Extensive hybridization was revealed with back‐cross individuals similar to either parental species predominating among hybrids. The hybrid zone exhibited a mosaic pattern: the genetic composition of the populations was correlated only weakly with their geographical position. No association with habitat type was found. Departures from Hardy–Weinberg proportions, significant linkage disequilibria and bimodal distribution of genotypes suggest strongly that assortative mating is an important factor shaping the genetic composition of hybrid populations. The pattern of cytonuclear disequilibria did not indicate much asymmetry in interspecific matings. Changes in the frequency of nuclear markers were highly concordant, whereas mtDNA showed much wider bidirectional introgression with 14% excess of T. montandoni haplotype. We argue that the mosaic structure of the newt hybrid zone results mainly from stochastic processes related to extinction and recolonization. Microgeographical differences in mtDNA introgression are explained by historical range shifts. Since morphologically intermediate males were underrepresented when compared to hybrid males identified by genetic markers, sexual selection acting against the morphological intermediates is implied. We discuss the implications of these findings in the context of reinforcement of prezygotic isolation in newts.
Molecular Ecology | 2013
Piotr Zieliński; Krystyna Nadachowska-Brzyska; B. Wielstra; R. Szkotak; S. D. Covaciu-Marcov; D. Cogălniceanu; W. Babik
Patterns of interspecific introgression may vary geographically, and the distribution of introgressed variants can yield insight into the historical dynamics of genetic interactions between hybridizing species. Urodele amphibians, often characterized by limited mobility, deep intraspecific genetic structuring and vulnerability to climatic changes, constitute suitable models for such historical inferences. Here, we combine an extensive survey of the mitochondrial (mtDNA) and nuclear (15 microsatellites) genomes in the Carpathian newt, Lissotriton montandoni (Lm) with species distribution modelling (SDM). Populations of the smooth newt, L. vulgaris (Lv) from the areas surrounding the Lm range were also sampled to test whether gene flow between these hybridizing species extends beyond the area of strict syntopy. The extent of introgression differs dramatically between the mitochondrial genome and the nuclear genome. While multiple, spatially and temporally distinct introgression events from Lv resulted in complete mtDNA replacement in Lm, there was little evidence of recent interspecific nuclear gene flow in the assayed markers. Microsatellite differentiation within Lm defines three units, probably derived from separate glacial refugia, located in the northern, eastern and southern part of the Carpathians. In situ survival and range fragmentation of Lm are supported by SDM, corroborating the role of the Carpathians as a major refugial area. Our results, in combination with previous reports of extensive introgression of the major histocompatibility complex (MHC) genes, emphasize the complexity of historical gene exchange between Lm and Lv.
Molecular Ecology | 2009
W. Babik; M. Pabijan; Jan W. Arntzen; D. Cogalniceanu; Walter Durka; J. Radwan
Depletion of polymorphism at major histocompatibility complex (MHC) genes has been hypothesized to limit the ability of populations to respond to emerging pathogens, thus putting their survival at risk. As pathogens contribute substantially to the global amphibian decline, assessing patterns of MHC variation is important in devising conservation strategies. Here, we directly compare levels of MHC class II and neutral variation between multiple populations of the great crested newt (Triturus cristatus) from refugial (REF: Romania) and postglacial expansion (PGE: Germany, Poland and UK) areas. REF populations harboured high levels of adaptive variation (24 expressed alleles), exhibiting clear signatures of historical positive selection, which points to the overall importance of MHC class II variation in this species. On the other hand, PGE populations were extremely depauperate (two alleles) but nevertheless have survived for c. 10 000 years, since the postglacial expansion. Variation in putative MHC class II pseudogenes, microsatellites and allozymes also showed a significant southern richness–northern purity pattern. The populations in the postglacial expansion area thus provide the clearest example to date of the long‐term survival of populations in which MHC variation, historically under positive selection, has been depleted.