Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Migalska is active.

Publication


Featured researches published by Katarzyna Migalska.


Advanced Functional Materials | 2012

Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery

Ryan F. Donnelly; Thakur Raghu Raj Singh; Martin J. Garland; Katarzyna Migalska; Rita Majithiya; Cian M. McCrudden; Prashant Laxman Kole; Tuan Mazlelaa Tuan Mahmood; Helen O. McCarthy; A. David Woolfson

Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients.


Journal of Controlled Release | 2010

Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution.

Ryan F. Donnelly; Martin J. Garland; Desmond I. J. Morrow; Katarzyna Migalska; Thakur Raghu Raj Singh; Rita Majithiya; A. David Woolfson

In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600μm height penetrated to a depth of 330μm when inserted at a force of 4.4N/array, while the penetration increased significantly to a depth of 520μm, when the force of application was increased to 16.4N/array. At an application force of 11.0N/array it was found that, in each case, increasing MN height from 350 to 600μm to 900μm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24h from an MN array of 900μm height (292.23±16.77μg), in comparison to an MN array of 350μm height (242.62±14.81μg) (p<0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.


Pharmaceutical Research | 2011

Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery.

Katarzyna Migalska; Desmond I. J. Morrow; Martin J. Garland; Raj Singh Thakur; A. David Woolfson; Ryan F. Donnelly

ABSTRACTPurposeTo assess the feasibility of transdermal macromolecule delivery using novel laser-engineered dissolving microneedles (MNs) prepared from aqueous blends of 20% w/w poly(methylvinylether maleic anhydride) (PMVE/MA) in vitro and in vivo.MethodsMicromoulding was employed to prepare insulin-loaded MNs from aqueous blends of 20% w/w PMVE/MA using laser-engineered moulds. To investigate conformational changes in insulin loaded into MNs, circular dichroism spectra were obtained. In vitro drug release studies from MNs across neonatal porcine skin were performed using Franz diffusion cells. The in vivo effect of MNs was assessed by their percutaneous administration to diabetic rats and measurement of blood glucose levels.ResultsMNs loaded with insulin constituted exact counterparts of mould dimensions. Circular dichroism analysis showed that encapsulation of insulin within polymeric matrix did not lead to change in protein secondary structure. In vitro studies revealed significant enhancement in insulin transport across the neonatal porcine skin. Percutaneous administration of insulin-loaded MN arrays to rats resulted in a dose-dependent hypoglycaemic effect.ConclusionWe demonstrated the efficacy of MNs prepared from aqueous blends of PMVE/MA in transdermal delivery of insulin. We are currently investigating the fate of the delivered insulin in skin and MN-mediated delivery of other macromolecules.


Drug Development and Industrial Pharmacy | 2009

Processing difficulties and instability of carbohydrate microneedle arrays

Ryan F. Donnelly; Desmond I. J. Morrow; Thakur Raghu Raj Singh; Katarzyna Migalska; Paul A. McCarron; Conor O'Mahony; A. David Woolfson

Background: A number of reports have suggested that many of the problems currently associated with the use of microneedle (MN) arrays for transdermal drug delivery could be addressed by using drug-loaded MN arrays prepared by moulding hot melts of carbohydrate materials. Methods: In this study, we explored the processing, handling, and storage of MN arrays prepared from galactose with a view to clinical application. Results: Galactose required a high processing temperature (160°C), and molten galactose was difficult to work with. Substantial losses of the model drugs 5-aminolevulinic acid (ALA) and bovine serum albumin were incurred during processing. While relatively small forces caused significant reductions in MN height when applied to an aluminium block, this was not observed during their relatively facile insertion into heat-stripped epidermis. Drug release experiments using ALA-loaded MN arrays revealed that less than 0.05% of the total drug loading was released across a model silicone membrane. Similarly, only low amounts of ALA (approximately 0.13%) and undetectable amounts of bovine serum albumin were delivered when galactose arrays were combined with aqueous vehicles. Microscopic inspection of the membrane following release studies revealed that no holes could be observed in the membrane, indicating that the partially dissolved galactose sealed the MN-induced holes, thus limiting drug delivery. Indeed, depth penetration studies into excised porcine skin revealed that there was no significant increase in ALA delivery using galactose MN arrays, compared to control (P value < 0.05). Galactose MNs were unstable at ambient relative humidities and became adhesive. Conclusion: The processing difficulties and instability encountered in this study are likely to preclude successful clinical application of carbohydrate MNs. The findings of this study are of particular importance to those in the pharmaceutical industry involved in the design and formulation of transdermal drug delivery systems based on dissolving MN arrays. It is hoped that we have illustrated conclusively the difficulties inherent in the processing and storage of carbohydrate-based dissolving MNs and that those in the industry will now follow alternative approaches.


Journal of Controlled Release | 2012

Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.

Martin J. Garland; Ester Caffarel–Salvador; Katarzyna Migalska; A. David Woolfson; Ryan F. Donnelly

It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery, as well as enabling the rate of delivery to be achieved with precise electronic control. However, no reports exist on the combination of ITP with in situ drug loaded polymeric MN delivery systems. Furthermore, although a number of studies have highlighted the importance of MN design for transdermal drug delivery enhancement, to date, there has been no systematic investigation of the influence of MN geometry on the performance of polymeric MN arrays which are designed to remain in contact with the skin during the period of drug delivery. As such, for the first time, this study reports on the effect of MN heigth and MN density upon the transdermal delivery of small hydrophilic compounds (theophylline, methylene blue, and fluorescein sodium) across neonatal porcine skin in vitro, with the optimised MN array design evaluated for its potential in the electrically faciliatated delivery of peptide (bovine insulin) and protein (fluorescein isothiocyanate-labelled bovine serum albumin (FTIC-BSA)) macromolecules. The results of the in vitro drug release investigations revealed that the extent of transdermal delivery was dependent upon the design of the MN array employed, whereby an increase in MN height and an increase in MN density led to an increase in the extent of transdermal drug delivery achieved 6h after MN application. Overall, the in vitro permeation studies revealed that the MN design containing 361 MNs/cm(2) of 600 μm height resulted in the greatest extent of transdermal drug delivery. As such, this design was evaluated for its potential in the MN mediated iontophoretic transdermal delivery. Whilst the combination of MN and ITP did not further enhance the extent of small molecular weight solute delivery, the extent of peptide/protein release was significantly enhanced when ITP was used in combination of the soluble PMVE/MA MN arrays. For example, the cumulative amount of insulin permeated across neonatal porcine skin at 6h was found to be approximately 150 μg (3.25%), 227 μg (4.85%) and 462 μg (9.87%) for ITP, MN, and MN/ITP delivery strategies, respectively. Similarly, the cumulative amount of FTIC-BSA delivered across neonatal porcine skin after a 6h period was found to be approximately 110 μg (4.53%) for MN alone and 326 μg (13.40%) for MN in combination with anodal ITP (p<0.001). As such, drug loaded soluble PMVE/MA MN arrays show promise for the electrically controlled transdermal delivery of biomacromolecules in a simple, one-step approach.


International Journal of Pharmaceutics | 2012

Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays

Martin J. Garland; Katarzyna Migalska; Tuan Mazlelaa Tuan-Mahmood; Thakur Raghu Raj Singh; Rita Majithija; Ester Caffarel-Salvador; Cian M. McCrudden; Helen O. McCarthy; A. David Woolfson; Ryan F. Donnelly

A plethora of studies have described the in vitro assessment of dissolving microneedle (MN) arrays for enhanced transdermal drug delivery, utilising a wide variety of model membranes as a representation of the skin barrier. However, to date, no discussion has taken place with regard to the choice of model skin membrane and the impact this may have on the evaluation of MN performance. In this study, we have, for the first time, critically assessed the most common types of in vitro skin permeation models - a synthetic hydrophobic membrane (Silescol(®) of 75 μm) and neonatal porcine skin of definable thickness (300-350 μm and 700-750 μm) - for evaluating the performance of drug loaded dissolving poly (methyl vinyl ether co maleic acid) (PMVE/MA) MN arrays. It was found that the choice of in vitro skin model had a significant effect on the permeation of a wide range of small hydrophilic molecules released from dissolving MNs. For example, when Silescol(®) was used as the model membrane, the cumulative percentage permeation of methylene blue 24h after the application of dissolvable MNs was found to be only approximately 3.7% of the total methylene blue loaded into the MN device. In comparison, when dermatomed and full thickness neonatal porcine skin were used as a skin model, approximately 67.4% and 47.5% of methylene blue loaded into the MN device was delivered across the skin 24h after the application of MN arrays, respectively. The application of methylene blue loaded MN arrays in a rat model in vivo revealed that the extent of MN-mediated percutaneous delivery achieved was most similar to that predicted from the in vitro investigations employing dermatomed neonatal porcine skin (300-350 μm) as the model skin membrane. On the basis of these results, a wider discussion within the MN community will be necessary to standardise the experimental protocols used for the evaluation and comparison of MN devices.


Expert Review of Medical Devices | 2011

Microneedle arrays as medical devices for enhanced transdermal drug delivery

Martin J. Garland; Katarzyna Migalska; Tuan Mazlelaa Tuan Mahmood; Thakur Raghu Raj Singh; A. David Woolfson; Ryan F. Donnelly

In order to exploit the transdermal route for systemic delivery of a wide range of drug molecules, including peptide/protein molecules and genetic material, a means of disrupting the excellent barrier properties of the uppermost layer of the skin, the stratum corneum, must be sought. The use of microneedle (MN) arrays has been proposed as a method to temporarily disrupt the barrier function of the skin and thus enable enhanced transdermal drug delivery. MN arrays consist of a plurality of micron-sized needles, generally ranging from 25 to 2000 µm in height, of a variety of different shapes and composition (e.g., silicon, metal, sugars and biodegradable polymers). The application of such MN arrays to the skin results in the creation of aqueous channels that are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of macromolecules. This article will focus on recent and future developments for MN technology, focusing on the materials used for MN fabrication, the forces required for MN insertion and potential safety aspects that may be involved with the use of MN devices.


Recent Patents on Drug Delivery & Formulation | 2010

Microporation Techniques for Enhanced Delivery of Therapeutic Agents

Thakur Raghu Raj Singh; Martin J. Garland; Corona M. Cassidy; Katarzyna Migalska; Yusuf K. Demir; Sharif Abdelghany; Elizabeth Ryan; David Woolfson; Ryan F. Donnelly

Perhaps the greatest barrier to development of the field of transmembrane drug delivery is that only a limited number of drugs are amenable to administration by this route. The highly lipophilic nature and barrier function of the uppermost layer of the skin, the stratum corneum, for example, restricts the permeation of hydrophilic, high molecular weight and charged compounds into the systemic circulation. Other membranes in the human body can also present significant barriers to drug permeation. In order to successfully deliver hydrophilic drugs, and macromolecular agents of interest, including peptides, DNA and small interfering RNA, many research groups and pharmaceutical companies Worldwide are focusing on the use of microporation methods and devices. Whilst there are a variety of microporation techniques, including the use of laser, thermal ablation, electroporation, radiofrequency, ultrasound, high pressure jets, and microneedle technology, they share the common goal of enhancing the permeability of a biological membrane through the creation of transient aqueous transport pathways of micron dimensions across that membrane. Once created, these micropores are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of hydrophilic macromolecules. Additionally, microporation devices also enable minimally-invasive sampling and monitoring of biological fluids. This review deals with the innovations relating to microporation-based methods and devices for drug delivery and minimally invasive monitoring, as disclosed in recent patent literature.


Journal of Controlled Release | 2012

Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations

Aditya Pattani; Paul F. McKay; Martin J. Garland; Rhonda Curran; Katarzyna Migalska; Corona M. Cassidy; R. Karl Malcolm; Robin J. Shattock; Helen O. McCarthy; Ryan F. Donnelly

Dissolving polymeric microneedle arrays formulated to contain recombinant CN54 HIVgp140 and the TLR4 agonist adjuvant MPLA were assessed for their ability to elicit antigen-specific immunity. Using this novel microneedle system we successfully primed antigen-specific responses that were further boosted by an intranasal mucosal inoculation to elicit significant antigen-specific immunity. This prime-boost modality generated similar serum and mucosal gp140-specific IgG levels to the adjuvanted and systemic subcutaneous inoculations. While the microneedle primed groups demonstrated a balanced Th1/Th2 profile, strong Th2 polarization was observed in the subcutaneous inoculation group, likely due to the high level of IL-5 secretion from cells in this group. Significantly, the animals that received a microneedle prime and intranasal boost regimen elicited a high level IgA response in both the serum and mucosa, which was greatly enhanced over the subcutaneous group. The splenocytes from this inoculation group secreted moderate levels of IL-5 and IL-10 as well as high amounts of IL-2, cytokines known to act in synergy to induce IgA. This work opens up the possibility for microneedle-based HIV vaccination strategies that, once fully developed, will greatly reduce risk for vaccinators and patients, with those in the developing world set to benefit most.


European Journal of Pharmaceutical Sciences | 2012

Microneedle-mediated transdermal bacteriophage delivery

Elizabeth Ryan; Martin J. Garland; Thakur Raghu Raj Singh; Eoin Bambury; John O’Dea; Katarzyna Migalska; Sean Gorman; Helen O. McCarthy; Brendan Gilmore; Ryan F. Donnelly

Graphical abstract Images of PC hollow MN arrays using a variety of microscopy techniques (a) Digital microscope images of single MN and a section of the MN array (b) SEM images of a single MN, the bore of the MN and a section of the MN array (c) X-ray microtomography images of single MNs, the bore of the MN and the Mn array (d) He-ion images of a single MN, illustrating the bore of the needle and a radial view of the MN.

Collaboration


Dive into the Katarzyna Migalska's collaboration.

Top Co-Authors

Avatar

Ryan F. Donnelly

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Martin J. Garland

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. David Woolfson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen O. McCarthy

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Corona M. Cassidy

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Ryan

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raj Singh Thakur

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge