Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Modrzynska is active.

Publication


Featured researches published by Katarzyna Modrzynska.


Nature | 2014

A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium

Abhinav Sinha; Katie R. Hughes; Katarzyna Modrzynska; Thomas D. Otto; Claudia Pfander; Nicholas J. Dickens; Agnieszka A. Religa; Ellen Bushell; Anne Graham; Rachael Cameron; Björn F.C. Kafsack; April E. Williams; Manuel Llinás; Matthew Berriman; Oliver Billker; Andrew P. Waters

Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PbAP2-G, a conserved member of the apicomplexan AP2 (ApiAP2) family of DNA-binding proteins, is essential for the commitment of asexually replicating forms to sexual development in Plasmodium berghei, a malaria parasite of rodents. PbAP2-G was identified from mutations in its encoding gene, PBANKA_143750, which account for the loss of sexual development frequently observed in parasites transmitted artificially by blood passage. Systematic gene deletion of conserved ApiAP2 genes in Plasmodium confirmed the role of PbAP2-G and revealed a second ApiAP2 member (PBANKA_103430, here termed PbAP2-G2) that significantly modulates but does not abolish gametocytogenesis, indicating that a cascade of ApiAP2 proteins are involved in commitment to the production and maturation of gametocytes. The data suggest a mechanism of commitment to gametocytogenesis in Plasmodium consistent with a positive feedback loop involving PbAP2-G that could be exploited to prevent the transmission of this pernicious parasite.


BMC Genomics | 2010

Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

Paul Hunt; Axel Martinelli; Katarzyna Modrzynska; Sofia T. Borges; Alison M. Creasey; Louise Rodrigues; Dario Beraldi; Laurence Loewe; Richard Fawcett; Sujai Kumar; Marian Thomson; Urmi Trivedi; Thomas D. Otto; Arnab Pain; Mark Blaxter; Pedro Cravo

BackgroundClassical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.ResultsA lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.ConclusionsThis integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations.


PLOS Pathogens | 2014

BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei

Rebecca D. Oppenheim; Darren J. Creek; James I. MacRae; Katarzyna Modrzynska; Paco Pino; Julien Limenitakis; Valérie Polonais; Frank Seeber; Michael P. Barrett; Oliver Billker; Malcolm J. McConville; Dominique Soldati-Favre

While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens.


Cell | 2017

Functional profiling of a plasmodium genome reveals an abundance of essential genes

Ellen Bushell; Ana Rita Gomes; Theo Sanderson; Burcu Anar; Gareth Girling; Colin Herd; Tom Metcalf; Katarzyna Modrzynska; Frank Schwach; Rowena E. Martin; Michael W. Mather; Geoffrey I. McFadden; Leopold Parts; Gavin G. Rutledge; Akhil B. Vaidya; Kai Wengelnik; Julian C. Rayner; Oliver Billker

Summary The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine.


Cell Host & Microbe | 2015

A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite

Ana Rita Gomes; Ellen Bushell; Frank Schwach; Gareth Girling; Burcu Anar; Michael A. Quail; Colin Herd; Claudia Pfander; Katarzyna Modrzynska; Julian C. Rayner; Oliver Billker

Summary The genome-wide identification of gene functions in malaria parasites is hampered by a lack of reverse genetic screening methods. We present a large-scale resource of barcoded vectors with long homology arms for effective modification of the Plasmodium berghei genome. Cotransfecting dozens of vectors into the haploid blood stages creates complex pools of barcoded mutants, whose competitive fitness can be measured during infection of a single mouse using barcode sequencing (barseq). To validate the utility of this resource, we rescreen the P. berghei kinome, using published kinome screens for comparison. We find that several protein kinases function redundantly in asexual blood stages and confirm the targetability of kinases cdpk1, gsk3, tkl3, and PBANKA_082960 by genotyping cloned mutants. Thus, parallel phenotyping of barcoded mutants unlocks the power of reverse genetic screening for a malaria parasite and will enable the systematic identification of genes essential for in vivo parasite growth and transmission.


Cell Host & Microbe | 2017

A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle

Katarzyna Modrzynska; Claudia Pfander; Lia Chappell; Lu Yu; Catherine Suarez; Kirsten Dundas; Ana Rita Gomes; David Goulding; Julian C. Rayner; Jyoti S. Choudhary; Oliver Billker

Summary A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle.


Nature | 2017

Nutrient sensing modulates malaria parasite virulence

Liliana Mancio-Silva; Ksenija Slavic; Margarida T. Grilo Ruivo; Ana Rita Grosso; Katarzyna Modrzynska; Iset Medina Vera; Joana Sales-Dias; Ana Rita Gomes; Cameron Ross MacPherson; Pierre Crozet; Mattia Adamo; Elena Baena-González; Rita Tewari; Manuel Llinás; Oliver Billker; Maria M. Mota

The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.


Antimicrobial Agents and Chemotherapy | 2011

Genomewide scan reveals amplification of mdr1 as a common denominator of resistance to mefloquine, lumefantrine, and artemisinin in Plasmodium chabaudi malaria parasites.

Sofia T. Borges; Pedro Cravo; Alison M. Creasey; Richard Fawcett; Katarzyna Modrzynska; Louise Rodrigues; Axel Martinelli; Paul Hunt

ABSTRACT Multidrug-resistant Plasmodium falciparum malaria parasites pose a threat to effective drug control, even to artemisinin-based combination therapies (ACTs). Here we used linkage group selection and Solexa whole-genome resequencing to investigate the genetic basis of resistance to component drugs of ACTs. Using the rodent malaria parasite P. chabaudi, we analyzed the uncloned progeny of a genetic backcross between the mefloquine-, lumefantrine-, and artemisinin-resistant mutant AS-15MF and a genetically distinct sensitive clone, AJ, following drug treatment. Genomewide scans of selection showed that parasites surviving each drug treatment bore a duplication of a segment of chromosome 12 (translocated to chromosome 04) present in AS-15MF. Whole-genome resequencing identified the size of the duplicated segment and its position on chromosome 4. The duplicated fragment extends for ∼393 kbp and contains over 100 genes, including mdr1, encoding the multidrug resistance P-glycoprotein homologue 1. We therefore show that resistance to chemically distinct components of ACTs is mediated by the same genetic mutation, highlighting a possible limitation of these therapies.


BMC Genomics | 2012

Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria

Katarzyna Modrzynska; Alison M. Creasey; Laurence Loewe; Timothee Cezard; Sofia T. Borges; Axel Martinelli; Louise Rodrigues; Pedro Cravo; Mark Blaxter; Richard Carter; Paul Hunt

BackgroundDrug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance.A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions.ResultsLoci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter.ConclusionsQuantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short-read genome resequencing can be used to reveal these signatures of drug selection at high resolution. The identities of three genes (and mutations within them) conferring different levels of chloroquine resistance generate insights regarding the genetic architecture and mechanisms of resistance to chloroquine and other drugs. Importantly, their orthologues may now be evaluated for critical or accessory roles in chloroquine resistance in human malarias P. vivax and P. falciparum.


Malaria Journal | 2013

Artemisinin resistance in rodent malaria - mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking

Gisela Henriques; Axel Martinelli; Louise Rodrigues; Katarzyna Modrzynska; Richard Fawcett; Douglas R. Houston; Sofia T. Borges; Umberto D’Alessandro; Halidou Tinto; Corine Karema; Paul Hunt; Pedro Cravo

BackgroundThe control of malaria, caused by Plasmodium falciparum, is hampered by the relentless evolution of drug resistance. Because artemisinin derivatives are now used in the most effective anti-malarial therapy, resistance to artemisinin would be catastrophic. Indeed, studies suggest that artemisinin resistance has already appeared in natural infections. Understanding the mechanisms of resistance would help to prolong the effective lifetime of these drugs. Genetic markers of resistance are therefore required urgently. Previously, a mutation in a de-ubiquitinating enzyme was shown to confer artemisinin resistance in the rodent malaria parasite Plasmodium chabaudi.MethodsHere, for a mutant P. chabaudi malaria parasite and its immediate progenitor, the in vivo artemisinin resistance phenotypes and the mutations arising using Illumina whole-genome re-sequencing were compared.ResultsAn increased artemisinin resistance phenotype is accompanied by one non-synonymous substitution. The mutated gene encodes the μ-chain of the AP2 adaptor complex, a component of the endocytic machinery. Homology models indicate that the mutated residue interacts with a cargo recognition sequence. In natural infections of the human malaria parasite P. falciparum, 12 polymorphisms (nine SNPs and three indels) were identified in the orthologous gene.ConclusionAn increased artemisinin-resistant phenotype occurs along with a mutation in a functional element of the AP2 adaptor protein complex. This suggests that endocytosis and trafficking of membrane proteins may be involved, generating new insights into possible mechanisms of resistance. The genotypes of this adaptor protein can be evaluated for its role in artemisinin responses in human infections of P. falciparum.

Collaboration


Dive into the Katarzyna Modrzynska's collaboration.

Top Co-Authors

Avatar

Oliver Billker

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ellen Bushell

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ana Rita Gomes

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Herd

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Julian C. Rayner

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Paul Hunt

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Rodrigues

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Sofia T. Borges

Universidade Nova de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge