Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Clark is active.

Publication


Featured researches published by Kate Clark.


Bulletin of the Seismological Society of America | 2012

National Seismic Hazard Model for New Zealand: 2010 Update

Mark W. Stirling; Graeme H. McVerry; Matthew C. Gerstenberger; Nicola Litchfield; Russ Van Dissen; Kelvin Berryman; Philip M. Barnes; Laura M. Wallace; Pilar Villamor; Robert Langridge; Geoffroy Lamarche; Scott D. Nodder; Martin Reyners; Brendon A. Bradley; David A. Rhoades; Warwick Smith; A. Nicol; Jarg R. Pettinga; Kate Clark; Katrina Jacobs

A team of earthquake geologists, seismologists, and engineering seis- mologists has collectively produced an update of the national probabilistic seismic hazard (PSH) model for New Zealand (National Seismic Hazard Model, or NSHM). The new NSHM supersedes the earlier NSHM published in 2002 and used as the hazard basis for the New Zealand Loadings Standard and numerous other end-user applica- tions. The new NSHM incorporates a fault source model that has been updated with over 200 new onshore and offshore fault sources and utilizes new New Zealand-based and international scaling relationships for the parameterization of the faults. The dis- tributed seismicity model has also been updated to include post-1997 seismicity data, a new seismicity regionalization, and improved methodology for calculation of the seismicity parameters. Probabilistic seismic hazard maps produced from the new NSHM show a similar pattern of hazard to the earlier model at the national scale, but there are some significant reductions and increases in hazard at the regional scale. The national-scale differences between the new and earlier NSHM appear less than those seen between much earlier national models, indicating that some degree of consis- tency has been achieved in the national-scale pattern of hazard estimates, at least for return periods of 475 years and greater. Online Material: Table of fault source parameters for the 2010 national seismic- hazard model.


Science | 2012

Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault

Kelvin Berryman; Ursula Cochran; Kate Clark; Glenn P. Biasi; Robert Langridge; Pilar Villamor

The Sedimentary Life of Earthquakes Estimating the hazards associated with possible large earthquakes depends largely on evidence of prior seismic activity. The relatively new global seismic networks installed to monitor earthquakes, however, have only captured the very recent history of fault zones that can remain active for thousands of years. To understand the recurrence of large earthquakes along the Alpine Fault in New Zealand, Berryman et al. (p. 1690) looked to the sediments near an old creek for evidence of surface ruptures and vertical offset. Along this fault segment, 24 large earthquakes seem to have occurred over the last 6000 years, resulting in a recurrence interval of ∼329 years. The activity is more regular than other similar strike-slip faults, such as the San Andreas Fault in California. Evidence of past earthquakes from sediments along New Zealand’s Alpine Fault improves seismic hazard estimates. The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.


Science | 2017

Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand

Ian Hamling; Sigrún Hreinsdóttir; Kate Clark; J. R. Elliott; Cunren Liang; Eric J. Fielding; Nicola Litchfield; Pilar Villamor; L. M. Wallace; Tim J. Wright; Elisabetta D’Anastasio; Stephen Bannister; David Burbidge; Paul Denys; Paula Gentle; Jamie Howarth; Christof Mueller; Neville Palmer; Chris Pearson; William Power; Philip M. Barnes; David J. A. Barrell; Russ Van Dissen; Robert Langridge; Timothy A. Little; Andrew Nicol; Jarg R. Pettinga; J. V. Rowland; Mark W. Stirling

An earthquake with a dozen faults The 2016 moment magnitude (Mw) 7.8 Kaikōura earthquake was one of the largest ever to hit New Zealand. Hamling et al. show with a new slip model that it was an incredibly complex event. Unlike most earthquakes, multiple faults ruptured to generate the ground shaking. A remarkable 12 faults ruptured overall, with the rupture jumping between faults located up to 15 km away from each other. The earthquake should motivate rethinking of certain seismic hazard models, which do not presently allow for this unusual complex rupture pattern. Science, this issue p. eaam7194 At least 12 faults spaced up to 15 kilometers apart ruptured during the magnitude 7.8 Kaikōura earthquake. INTRODUCTION On 14 November 2016 (local time), northeastern South Island of New Zealand was struck by a major moment magnitude (Mw) 7.8 earthquake. The Kaikōura earthquake was the most powerful experienced in the region in more than 150 years. The whole of New Zealand reported shaking, with widespread damage across much of northern South Island and in the capital city, Wellington. The earthquake straddled two distinct seismotectonic domains, breaking multiple faults in the contractional North Canterbury fault zone and the dominantly strike-slip Marlborough fault system. RATIONALE Earthquakes are conceptually thought to occur along a single fault. Although this is often the case, the need to account for multiple segment ruptures challenges seismic hazard assessments and potential maximum earthquake magnitudes. Field observations from many past earthquakes and numerical models suggest that a rupture will halt if it has to step over a distance as small as 5 km to continue on a different fault. The Kaikōura earthquake’s complexity defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and provides additional motivation to rethink these issues in seismic hazard models. RESULTS Field observations, in conjunction with interferometric synthetic aperture radar (InSAR), Global Positioning System (GPS), and seismology data, reveal the Kaikōura earthquake to be one of the most complex earthquakes ever recorded with modern instrumental techniques. The rupture propagated northward for more than 170 km along both mapped and unmapped faults before continuing offshore at the island’s northeastern extent. A tsunami of up to 3 m in height was detected at Kaikōura and at three other tide gauges along the east coast of both the North and South Islands. Geodetic and geological field observations reveal surface ruptures along at least 12 major crustal faults and extensive uplift along much of the coastline. Surface displacements measured by GPS and satellite radar data show horizontal offsets of ~6 m. In addition, a fault-bounded block (the Papatea block) was uplifted by up to 8 m and translated south by 4 to 5 m. Modeling suggests that some of the faults slipped by more than 20 m, at depths of 10 to 15 km, with surface slip of ~10 m consistent with field observations of offset roads and fences. Although we can explain most of the deformation by crustal faulting alone, global moment tensors show a larger thrust component, indicating that the earthquake also involved some slip along the southern end of the Hikurangi subduction interface, which lies ~20 km beneath Kaikōura. Including this as a fault source in the inversion suggests that up to 4 m of predominantly reverse slip may have occurred on the subduction zone beneath the crustal faults, contributing ~10 to 30% of the total moment. CONCLUSION Although the unusual multifault rupture observed in the Kaikōura earthquake may be partly related to the geometrically complex nature of the faults in this region, this event emphasizes the importance of reevaluating how rupture scenarios are defined for seismic hazard models in plate boundary zones worldwide. Observed ground deformation from the 2016 Kaikōura, New Zealand, earthquake. (A and B) Photos showing the coastal uplift of 2 to 3 m associated with the Papatea block [labeled in (C)]. The inset in (A) shows an aerial view of New Zealand. Red lines denote the location of known active faults. The black box indicates the Marlborough fault system


New Zealand Journal of Geology and Geophysics | 2014

A model of active faulting in New Zealand

Nicola Litchfield; R. Van Dissen; Rupert Sutherland; Patricia M. Barnes; Simon C. Cox; Richard J. Norris; Rj Beavan; R. Langridge; Pilar Villamor; Kelvin Berryman; Mark W. Stirling; A. Nicol; Scott D. Nodder; Geoffroy Lamarche; Dja Barrell; Jarg R. Pettinga; Timothy A. Little; N. Pondard; Joshu J. Mountjoy; Kate Clark

Active fault traces are a surface expression of permanent deformation that accommodates the motion within and between adjacent tectonic plates. We present an updated national-scale model for active faulting in New Zealand, summarize the current understanding of fault kinematics in 15 tectonic domains, and undertake some brief kinematic analysis including comparison of fault slip rates with GPS velocities. The model contains 635 simplified faults with tabulated parameters of their attitude (dip and dip-direction) and kinematics (sense of movement and rake of slip vector), net slip rate and a quality code. Fault density and slip rates are, as expected, highest along the central plate boundary zone, but the model is undoubtedly incomplete, particularly in rapidly eroding mountainous areas and submarine areas with limited data. The active fault data presented are of value to a range of kinematic, active fault and seismic hazard studies.


New Zealand Journal of Geology and Geophysics | 2011

Investigating subduction earthquake geology along the southern Hikurangi margin using palaeoenvironmental histories of intertidal inlets

Kate Clark; Bw Hayward; Ursula Cochran; Hr Grenfell; E Hemphill–Haley; Dallas C. Mildenhall; Ma Hemphill–Haley; Lm Wallace

Abstract Three marine inlets across the southern Hikurangi margin, New Zealand, are investigated for evidence of palaeocoseismic subsidence, a signal associated with great subduction earthquakes. Microfossil analyses and radiocarbon-dated shells from core samples show that none of the sites have subsided since 2000 cal yr BP. Pauatahanui Inlet has remained at the present elevation since 7000 cal yr BP, while Big Lagoon and south-eastern Lake Wairarapa both subsided c. 4 m between 6000 and 2000 cal yr BP. At Big Lagoon most or all of the subsidence was tectonic. At south-eastern Lake Wairarapa, however, sediment compaction caused some or all of the subsidence. Neither of the subsided sites contain sedimentary or palaeoenvironmental transitions suggestive of sudden, coseismic relative sea-level rise. One possible palaeotsunami deposit was found at Big Lagoon, coincident with a colluvial deposit, and two liquefaction layers were identified in south-eastern Lake Wairarapa.


The Holocene | 2011

Holocene coastal evolution and evidence for paleotsunami from a tectonically stable region, Tasmania, Australia

Kate Clark; Ursula Cochran; Colin Mazengarb

Stratigraphic investigations of three coastal waterbodies in southeastern Tasmania reveal major paleoenvironmental phases related to sea level change and anomalous deposits consistent with tsunami inundation. Twenty-two short sediment cores were examined for their sedimentology and fossil diatom, foraminifera and macrofossil assemblages; nine radiocarbon ages were obtained. Despite diverse Holocene histories at each site, four common phases of Holocene paleoenvironmental evolution can be distinguished. In Phase I (pre-8000 yr BP) terrestrial environments existed. During Phase II (8000–6500 yr BP) ponded freshwater environments formed behind transgressive coastal barriers. In Phase III (6500–2000 yr BP) the sites were subject to varying degrees of marine influence, resulting in environments ranging from current-swept tidal inlets to sheltered brackish-marine lagoons. In Phase IV (2000 yr BP to present) there was a decrease in marine influence, one site changed to a freshwater wetland environment while the other two changed to ephemeral salt pans. This study suggests that postglacial sea level rise culminated after c. 7300 cal. yr BP in southeastern Tasmania and that there was probably a late-Holocene fall in sea level. These paleoenvironmental histories provide a framework within which to identify anomalous deposits and assess them for likely causes. Five anomalous deposits are identified, three of which are considered likely to have been deposited by tsunami occurring at c. 4000 cal. yr BP, c. 2000 cal. yr BP and <2000 cal. yr BP, although deposition by large storms cannot be ruled out.


Pure and Applied Geophysics | 2017

Tsunami runup and tide-gauge observations from the 14 November 2016 M7.8 Kaikōura earthquake, New Zealand

William Power; Kate Clark; Darren N. King; Jose C. Borrero; Jamie Howarth; Emily M. Lane; Derek Goring; James Goff; Catherine Chagué-Goff; James Williams; Catherine M. Reid; Colin Whittaker; Christof Mueller; Shaun Williams; Matthew W. Hughes; Jo Hoyle; Jochen Bind; Delia Strong; Nicola Litchfield; Adrian Benson

The 2016 Mw 7.8 Kaikōura earthquake was one of the largest earthquakes in New Zealand’s historical record, and it generated the most significant local source tsunami to affect New Zealand since 1947. There are many unusual features of this earthquake from a tsunami perspective: the epicentre was well inland of the coast, multiple faults were involved in the rupture, and the greatest tsunami damage to residential property was far from the source. In this paper, we summarise the tectonic setting and the historical and geological evidence for past tsunamis on this coast, then present tsunami tide gauge and runup field observations of the tsunami that followed the Kaikōura earthquake. For the size of the tsunami, as inferred from the measured heights, the impact of this event was relatively modest, and we discuss the reasons for this which include: the state of the tide at the time of the earthquake, the degree of co-seismic uplift, and the nature of the coastal environment in the tsunami source region.


Geological Society of America Bulletin | 2013

Deriving a long paleoseismic record from a shallow-water Holocene basin next to the Alpine fault, New Zealand

Kate Clark; Ursula Cochran; Kelvin Berryman; Glenn P. Biasi; R. Langridge; Pilar Villamor; Timothy D. Bartholomew; Nicola Litchfield; D. Pantosti; S. Marco; R. Van Dissen; Gillian M. Turner; Mark A. Hemphill-Haley

A sedimentary sequence that was highly sensitive to fault rupture–driven changes in water level and sediment supply has been used to extract a continuous record of 22 large earthquakes on the Alpine fault, the fastest-slipping fault in New Zealand. At Hokuri Creek, in South Westland, an 18 m thickness of Holocene sediments accumulated against the Alpine fault scarp from ca. A.D. 800 to 6000 B.C. We used geomorphological mapping, sedimentology, and paleoenvironmental reconstruction to investigate the relationship between these sediments and Alpine fault rupture. We found that repeated fault rupture is the most convincing mechanism for explaining all the features of the alternating peat and silt sedimentary sequence. Climate has contributed to sedimentation but is unlikely to be the driver of these cyclical changes in sediment type and paleoenvironment. Other nontectonic causes for the sedimentary alternations do not produce the incremental increase in basin accommodation space necessary to maintain the shallow-water environment for 6800 yr. Our detailed documentation of this near-fault sedimentary basin sequence highlights the advantages of extracting paleoearthquake records from such sites—the continuity of sedimentation, abundance of dateable material, and pristine preservation of older events.


Bulletin of the Seismological Society of America | 2018

Surface Rupture of Multiple Crustal Faults in the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake

Nicola Litchfield; Pilar Villamor; Russ Van Dissen; Andrew Nicol; Philip M. Barnes; David J. A. Barrell; Jarg R. Pettinga; Robert Langridge; Timothy A. Little; Joshu J. Mountjoy; William Ries; J. V. Rowland; Clark Fenton; Mark W. Stirling; Jesse Kearse; Kelvin Berryman; Ursula Cochran; Kate Clark; Mark A. Hemphill-Haley; Narges Khajavi; Katie E. Jones; Garth Archibald; Phaedra Upton; Cameron Asher; Adrian Benson; Simon C. Cox; Caleb Gasston; Dan Hale; Brendan Hall; Alexandra E. Hatem

Multiple (>20 >20 ) crustal faults ruptured to the ground surface and seafloor in the 14 November 2016 M w Mw 7.8 Kaikōura earthquake, and many have been documented in detail, providing an opportunity to understand the factors controlling multifault ruptures, including the role of the subduction interface. We present a summary of the surface ruptures, as well as previous knowledge including paleoseismic data, and use these data and a 3D geological model to calculate cumulative geological moment magnitudes (M G w MwG ) and seismic moments for comparison with those from geophysical datasets. The earthquake ruptured faults with a wide range of orientations, sense of movement, slip rates, and recurrence intervals, and crossed a tectonic domain boundary, the Hope fault. The maximum net surface displacement was ∼12  m ∼12  m on the Kekerengu and the Papatea faults, and average displacements for the major faults were 0.7–1.5 m south of the Hope fault, and 5.5–6.4 m to the north. M G w MwG using two different methods are M G w MwG 7.7 +0.3 −0.2 7.7−0.2+0.3 and the seismic moment is 33%–67% of geophysical datasets. However, these are minimum values and a best estimate M G w MwG incorporating probable larger slip at depth, a 20 km seismogenic depth, and likely listric geometry is M G w MwG 7.8±0.2 7.8±0.2 , suggests ≤32% ≤32% of the moment may be attributed to slip on the subduction interface and/or a midcrustal detachment. Likely factors contributing to multifault rupture in the Kaikōura earthquake include (1) the presence of the subduction interface, (2) physical linkages between faults, (3) rupture of geologically immature faults in the south, and (4) inherited geological structure. The estimated recurrence interval for the Kaikōura earthquake is ≥5,000–10,000  yrs ≥5,000–10,000  yrs , and so it is a relatively rare event. Nevertheless, these findings support the need for continued advances in seismic hazard modeling to ensure that they incorporate multifault ruptures that cross tectonic domain boundaries.


Seismological Research Letters | 2017

The New Zealand Tsunami Database: Historical and Modern Records

G. Downes; A. Barberopoulou; Ursula Cochran; Kate Clark; F. Scheele

A database of historical (preinstrumental) and modern (instrumentally recorded) tsunamis that have impacted or been observed in New Zealand has been compiled and published online. New Zealand’s tectonic setting, astride an obliquely convergent tectonic boundary on the Pacific Rim, means that it is vulnerable to local, regional, and circum‐Pacific tsunamis. Despite New Zealand’s comparatively short written historical record of about 200 years, there is a wealth of information about the impact of past tsunamis. The New Zealand Tsunami Database (NZTD) currently has 800+ entries that describe >50 high‐validity tsunamis. Sources of historical information include witness reports recorded in diaries, notes, newspapers, books, and photographs. Information on recent events comes from tide gauges and other instrumental recordings such as Deep‐ocean Assessment and Reporting of Tsunamis (DART) buoys, and media of greater variety, for example, video and online surveys. The NZTD is an ongoing project with information added as further historical records come to light. Modern tsunamis are also added to the database once the relevant data for an event have been collated and edited. This article briefly overviews the procedures and tools used in the recording and analysis of New Zealand’s historical tsunamis, with emphasis on database content.

Collaboration


Dive into the Kate Clark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy A. Little

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge