Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison Vaughan is active.

Publication


Featured researches published by Alison Vaughan.


The New England Journal of Medicine | 2013

Diverse sources of C. difficile infection identified on whole-genome sequencing.

David W. Eyre; Madeleine Cule; Daniel J. Wilson; David Griffiths; Alison Vaughan; Lily O'Connor; Camilla L. C. Ip; Tanya Golubchik; Elizabeth M. Batty; John Finney; David H. Wyllie; Xavier Didelot; Paolo Piazza; Rory Bowden; Kate E. Dingle; Rosalind M. Harding; Derrick W. Crook; Mark H. Wilcox; Tim Peto; A. S. Walker

BACKGROUND It has been thought that Clostridium difficile infection is transmitted predominantly within health care settings. However, endemic spread has hampered identification of precise sources of infection and the assessment of the efficacy of interventions. METHODS From September 2007 through March 2011, we performed whole-genome sequencing on isolates obtained from all symptomatic patients with C. difficile infection identified in health care settings or in the community in Oxfordshire, United Kingdom. We compared single-nucleotide variants (SNVs) between the isolates, using C. difficile evolution rates estimated on the basis of the first and last samples obtained from each of 145 patients, with 0 to 2 SNVs expected between transmitted isolates obtained less than 124 days apart, on the basis of a 95% prediction interval. We then identified plausible epidemiologic links among genetically related cases from data on hospital admissions and community location. RESULTS Of 1250 C. difficile cases that were evaluated, 1223 (98%) were successfully sequenced. In a comparison of 957 samples obtained from April 2008 through March 2011 with those obtained from September 2007 onward, a total of 333 isolates (35%) had no more than 2 SNVs from at least 1 earlier case, and 428 isolates (45%) had more than 10 SNVs from all previous cases. Reductions in incidence over time were similar in the two groups, a finding that suggests an effect of interventions targeting the transition from exposure to disease. Of the 333 patients with no more than 2 SNVs (consistent with transmission), 126 patients (38%) had close hospital contact with another patient, and 120 patients (36%) had no hospital or community contact with another patient. Distinct subtypes of infection continued to be identified throughout the study, which suggests a considerable reservoir of C. difficile. CONCLUSIONS Over a 3-year period, 45% of C. difficile cases in Oxfordshire were genetically distinct from all previous cases. Genetically diverse sources, in addition to symptomatic patients, play a major part in C. difficile transmission. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).


Journal of Clinical Microbiology | 2010

Multilocus Sequence Typing of Clostridium difficile

David Griffiths; Warren N. Fawley; Melina Kachrimanidou; Rory Bowden; Derrick W. Crook; Rowena Fung; Tanya Golubchik; Rosalind M. Harding; Katie Jeffery; Keith A. Jolley; Richard Kirton; Tim Peto; Gareth Rees; Nicole Stoesser; Alison Vaughan; A. Sarah Walker; Bernadette C. Young; Mark H. Wilcox; Kate E. Dingle

ABSTRACT A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/ ) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control.


Clinical Infectious Diseases | 2013

Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection.

A. Sarah Walker; David W. Eyre; David H. Wyllie; Kate E. Dingle; David Griffiths; Brian Shine; Sarah Oakley; Lily O'Connor; John Finney; Alison Vaughan; Derrick W. Crook; Mark H. Wilcox; Tim Peto

Clostridium difficile genotype predicts 14-day mortality in 1893 enzyme immunoassay–positive/culture-positive adults. Excess mortality correlates with genotype-specific changes in biomarkers, strongly implicating inflammatory pathways as a major influence on poor outcome. Polymerase chain reaction ribotype 078/ST 11(clade 5) is associated with high mortality; ongoing surveillance remains essential.


Clinical Infectious Diseases | 2012

Predictors of first recurrence of Clostridium difficile infection: implications for initial management.

David W. Eyre; A. Sarah Walker; David H. Wyllie; Kate E. Dingle; David Griffiths; John Finney; Lily O'Connor; Alison Vaughan; Derrick W. Crook; Mark H. Wilcox; Tim Peto

Symptomatic recurrence of Clostridium difficile infection (CDI) occurs in approximately 20% of patients and is challenging to treat. Identifying those at high risk could allow targeted initial management and improve outcomes. Adult toxin enzyme immunoassay–positive CDI cases in a population of approximately 600 000 persons from September 2006 through December 2010 were combined with epidemiological/clinical data. The cumulative incidence of recurrence ≥14 days after the diagnosis and/or onset of first-ever CDI was estimated, treating death without recurrence as a competing risk, and predictors were identified from cause-specific proportional hazards regression models. A total of 1678 adults alive 14 days after their first CDI were included; median age was 77 years, and 1191 (78%) were inpatients. Of these, 363 (22%) experienced a recurrence ≥14 days after their first CDI, and 594 (35%) died without recurrence through March 2011. Recurrence risk was independently and significantly higher among patients admitted as emergencies, with previous gastrointestinal ward admission(s), last discharged 4–12 weeks before first diagnosis, and with CDI diagnosed at admission. Recurrence risk also increased with increasing age, previous total hours admitted, and C-reactive protein level at first CDI (all P < .05). The 4-month recurrence risk increased by approximately 5% (absolute) for every 1-point increase in a risk score based on these factors. Risk factors, including increasing age, initial disease severity, and hospital exposure, predict CDI recurrence and identify patients likely to benefit from enhanced initial CDI treatment.


Genome Biology | 2012

Microevolutionary analysis of Clostridium difficile genomes to investigate transmission

Xavier Didelot; David W. Eyre; Madeleine Cule; Camilla L. C. Ip; M A Ansari; David Griffiths; Alison Vaughan; Lily O'Connor; Tanya Golubchik; Elizabeth M. Batty; Paolo Piazza; Daniel J. Wilson; Rory Bowden; Peter Donnelly; Kate E. Dingle; Mark H. Wilcox; A. S. Walker; Derrick W. Crook; Tim Peto; Rosalind M. Harding

BackgroundThe control of Clostridium difficile infection is a major international healthcare priority, hindered by a limited understanding of transmission epidemiology for these bacteria. However, transmission studies of bacterial pathogens are rapidly being transformed by the advent of next generation sequencing.ResultsHere we sequence whole C. difficile genomes from 486 cases arising over four years in Oxfordshire. We show that we can estimate the times back to common ancestors of bacterial lineages with sufficient resolution to distinguish whether direct transmission is plausible or not. Time depths were inferred using a within-host evolutionary rate that we estimated at 1.4 mutations per genome per year based on serially isolated genomes. The subset of plausible transmissions was found to be highly associated with pairs of patients sharing time and space in hospital. Conversely, the large majority of pairs of genomes matched by conventional typing and isolated from patients within a month of each other were too distantly related to be direct transmissions.ConclusionsOur results confirm that nosocomial transmission between symptomatic C. difficile cases contributes far less to current rates of infection than has been widely assumed, which clarifies the importance of future research into other transmission routes, such as from asymptomatic carriers. With the costs of DNA sequencing rapidly falling and its use becoming more and more widespread, genomics will revolutionize our understanding of the transmission of bacterial pathogens.


PLOS ONE | 2011

Clinical Clostridium difficile: Clonality and Pathogenicity Locus Diversity

Kate E. Dingle; David Griffiths; Xavier Didelot; Jessica Evans; Alison Vaughan; Melina Kachrimanidou; Nicole Stoesser; Keith A. Jolley; Tanya Golubchik; Rosalind M. Harding; Tim Peto; Warren N. Fawley; A. Sarah Walker; Mark H. Wilcox; Derrick W. Crook

Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains.


Genome Biology and Evolution | 2014

Evolutionary History of the Clostridium difficile Pathogenicity Locus

Kate E. Dingle; Briony Elliott; E.R. Robinson; D.T. Griffiths; David W. Eyre; Nicole Stoesser; Alison Vaughan; Tanya Golubchik; Warren N. Fawley; Mark H. Wilcox; Tim Peto; A. S. Walker; Thomas V. Riley; Derrick W. Crook; Xavier Didelot

The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19 kb pathogenicity locus (PaLoc). Stable integration of the PaLoc is suggested by its single chromosomal location and the clade specificity of its different genetic variants. However, the PaLoc is variably present, even among closely related strains, and thus resembles a mobile genetic element. Our aim was to explain these apparently conflicting observations by reconstructing the evolutionary history of the PaLoc. Phylogenetic analyses and annotation of the regions spanning the PaLoc were performed using C. difficile population-representative genomes chosen from a collection of 1,693 toxigenic (PaLoc present) and nontoxigenic (PaLoc absent) isolates. Comparison of the core genome and PaLoc phylogenies demonstrated an eventful evolutionary history, with distinct PaLoc variants acquired clade specifically after divergence. In particular, our data suggest a relatively recent PaLoc acquisition in clade 4. Exchanges and losses of the PaLoc DNA have also occurred, via long homologous recombination events involving flanking chromosomal sequences. The most recent loss event occurred ∼30 years ago within a clade 1 genotype. The genetic organization of the clade 3 PaLoc was unique in containing a stably integrated novel transposon (designated Tn6218), variants of which were found at multiple chromosomal locations. Tn6218 elements were Tn916-related but nonconjugative and occasionally contained genes conferring resistance to clinically relevant antibiotics. The evolutionary histories of two contrasting but clinically important genetic elements were thus characterized: the PaLoc, mobilized rarely via homologous recombination, and Tn6218, mobilized frequently through transposition.


Lancet Infectious Diseases | 2017

Effects of control interventions on Clostridium difficile infection in England: an observational study

Kate E. Dingle; Xavier Didelot; T Phuong Quan; David W. Eyre; Nicole Stoesser; Tanya Golubchik; Rosalind M. Harding; Daniel J. Wilson; David Griffiths; Alison Vaughan; John Finney; David H. Wyllie; Sarah Oakley; Warren N. Fawley; Jane Freeman; K. Morris; Jessica Martin; Philip Howard; Sherwood L. Gorbach; Ellie J. C. Goldstein; Diane M. Citron; Susan Hopkins; Russell Hope; Alan P. Johnson; Mark H. Wilcox; Tim Peto; A. Sarah Walker; Derrick W. Crook; Carlos del Ojo Elias; Charles Crichton

Summary Background The control of Clostridium difficile infections is an international clinical challenge. The incidence of C difficile in England declined by roughly 80% after 2006, following the implementation of national control policies; we tested two hypotheses to investigate their role in this decline. First, if C difficile infection declines in England were driven by reductions in use of particular antibiotics, then incidence of C difficile infections caused by resistant isolates should decline faster than that caused by susceptible isolates across multiple genotypes. Second, if C difficile infection declines were driven by improvements in hospital infection control, then transmitted (secondary) cases should decline regardless of susceptibility. Methods Regional (Oxfordshire and Leeds, UK) and national data for the incidence of C difficile infections and antimicrobial prescribing data (1998–2014) were combined with whole genome sequences from 4045 national and international C difficile isolates. Genotype (multilocus sequence type) and fluoroquinolone susceptibility were determined from whole genome sequences. The incidence of C difficile infections caused by fluoroquinolone-resistant and fluoroquinolone-susceptible isolates was estimated with negative-binomial regression, overall and per genotype. Selection and transmission were investigated with phylogenetic analyses. Findings National fluoroquinolone and cephalosporin prescribing correlated highly with incidence of C difficile infections (cross-correlations >0·88), by contrast with total antibiotic prescribing (cross-correlations <0·59). Regionally, C difficile decline was driven by elimination of fluoroquinolone-resistant isolates (approximately 67% of Oxfordshire infections in September, 2006, falling to approximately 3% in February, 2013; annual incidence rate ratio 0·52, 95% CI 0·48–0·56 vs fluoroquinolone-susceptible isolates: 1·02, 0·97–1·08). C difficile infections caused by fluoroquinolone-resistant isolates declined in four distinct genotypes (p<0·01). The regions of phylogenies containing fluoroquinolone-resistant isolates were short-branched and geographically structured, consistent with selection and rapid transmission. The importance of fluoroquinolone restriction over infection control was shown by significant declines in inferred secondary (transmitted) cases caused by fluoroquinolone-resistant isolates with or without hospital contact (p<0·0001) versus no change in either group of cases caused by fluoroquinolone-susceptible isolates (p>0·2). Interpretation Restricting fluoroquinolone prescribing appears to explain the decline in incidence of C difficile infections, above other measures, in Oxfordshire and Leeds, England. Antimicrobial stewardship should be a central component of C difficile infection control programmes. Funding UK Clinical Research Collaboration (Medical Research Council, Wellcome Trust, National Institute for Health Research); NIHR Oxford Biomedical Research Centre; NIHR Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance (Oxford University in partnership with Public Health England [PHE]), and on Modelling Methodology (Imperial College, London in partnership with PHE); and the Health Innovation Challenge Fund.


PLOS ONE | 2013

Asymptomatic Clostridium difficile Colonisation and Onward Transmission

David W. Eyre; David T. Griffiths; Alison Vaughan; Tanya Golubchik; Milind Acharya; Lily O’Connor; Derrick W. Crook; A. Sarah Walker; Tim Peto

Introduction Combined genotyping/whole genome sequencing and epidemiological data suggest that in endemic settings only a minority of Clostridium difficile infection, CDI, is acquired from other cases. Asymptomatic patients are a potential source for many unexplained cases. Methods We prospectively screened a cohort of medical inpatients in a UK teaching hospital for asymptomatic C. difficile carriage using stool culture. Electronic and questionnaire data were used to determine risk factors for asymptomatic carriage by logistic regression. Carriage isolates were compared with all hospital/community CDI cases from the same geographic region, from 12 months before the study to 3 months after, using whole genome sequencing and hospital admission data, assessing particularly for evidence of onward transmission from asymptomatic cases. Results Of 227 participants recruited, 132 provided ≥1 stool samples for testing. 18 participants were culture-positive for C. difficile, 14/132(11%) on their first sample. Independent risk factors for asymptomatic carriage were patient reported loose/frequent stool (but not meeting CDI criteria of ≥3 unformed stools in 24 hours), previous overnight hospital stay within 6 months, and steroid/immunosuppressant medication in the last 6 months (all p≤0.02). Surprisingly antibiotic exposure in the last 6 months was independently associated with decreased risk of carriage (p = 0.005). The same risk factors were identified excluding participants reporting frequent/loose stool. 13/18(72%) asymptomatically colonised patients carried toxigenic strains from common disease-causing lineages found in cases. Several plausible transmission events to asymptomatic carriers were identified, but in this relatively small study no clear evidence of onward transmission from an asymptomatic case was seen. Conclusions Transmission events from any one asymptomatic carrier are likely to be relatively rare, but as asymptomatic carriage is common, it may still be an important source of CDI, which could be quantified in larger studies. Risk factors established for asymptomatic carriage may help identify patients for inclusion in such studies.


The Journal of Infectious Diseases | 2013

Recombinational Switching of the Clostridium difficile S-Layer and a Novel Glycosylation Gene Cluster Revealed by Large-Scale Whole-Genome Sequencing

Kate E. Dingle; Xavier Didelot; M. Azim Ansari; David W. Eyre; Alison Vaughan; David T. Griffiths; Camilla L. C. Ip; Elizabeth M. Batty; Tanya Golubchik; Rory Bowden; Keith A. Jolley; Derek W. Hood; Warren N. Fawley; A. Sarah Walker; Tim Peto; Mark H. Wilcox; Derrick W. Crook

BACKGROUND Clostridium difficile is a major cause of nosocomial diarrhea, with 30-day mortality reaching 30%. The cell surface comprises a paracrystalline proteinaceous S-layer encoded by the slpA gene within the cell wall protein (cwp) gene cluster. Our purpose was to understand the diversity and evolution of slpA and nearby genes also encoding immunodominant cell surface antigens. METHODS Whole-genome sequences were determined for 57 C. difficile isolates representative of the population structure and different clinical phenotypes. Phylogenetic analyses were performed on their genomic region (>63 kb) spanning the cwp cluster. RESULTS Genetic diversity across the cwp cluster peaked within slpA, cwp66 (adhesin), and secA2 (secretory translocase). These genes formed a 10-kb cassette, of which 12 divergent variants were found. Homologous recombination involving this cassette caused it to associate randomly with genotype. One cassette contained a novel insertion (length, approximately 24 kb) that resembled S-layer glycosylation gene clusters. CONCLUSIONS Genetic exchange of S-layer cassettes parallels polysaccharide capsular switching in other species. Both cause major antigenic shifts, while the remainder of the genome is unchanged. C. difficile genotype is therefore not predictive of antigenic type. S-layer switching and immune escape could help explain temporal and geographic variation in C. difficile epidemiology and may inform genotyping and vaccination strategies.

Collaboration


Dive into the Alison Vaughan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Warren N. Fawley

Leeds Teaching Hospitals NHS Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge