Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Fox is active.

Publication


Featured researches published by Kate Fox.


Biomaterials | 2012

Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis

Alex E. Hadjinicolaou; Ronald T. Leung; David J. Garrett; Kumaravelu Ganesan; Kate Fox; David A. X. Nayagam; Mohit N. Shivdasani; Hamish Meffin; Michael R. Ibbotson; Steven Prawer; Brendan J. O'Brien

Electronic retinal implants for the blind are already a market reality. A world wide effort is underway to find the technology that offers the best combination of performance and safety for potential patients. Our approach is to construct an epi-retinally targeted device entirely encapsulated in diamond to maximise longevity and biocompatibility. The stimulating array of our device comprises a monolith of electrically insulating diamond with thousands of hermetic, microscale nitrogen doped ultra-nanocrystalline diamond (N-UNCD) feedthroughs. Here we seek to establish whether the conducting diamond feedthroughs of the array can be used as stimulating electrodes without further modification with a more traditional neural stimulation material. Efficacious stimulation of retinal ganglion cells was established using single N-UNCD microelectrodes in contact with perfused, explanted, rat retina. Evoked rat retinal ganglion cell action potentials were recorded by patch clamp recording from single ganglion cells, adjacent to the N-UNCD stimulating electrode. Separately, excellent electrochemical stability of N-UNCD was established by prolonged pulsing in phosphate buffered saline at increasing charge density up to the measured charge injection limit for the material.


Journal of Neural Engineering | 2012

Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications

David J. Garrett; Kumaravelu Ganesan; Alastair Stacey; Kate Fox; Hamish Meffin; Steven Prawer

Diamond is well known to possess many favourable qualities for implantation into living tissue including biocompatibility, biostability, and for some applications hardness. However, conducting diamond has not, to date, been exploited in neural stimulation electrodes due to very low electrochemical double layer capacitance values that have been previously reported. Here we present electrochemical characterization of ultra-nanocrystalline diamond electrodes grown in the presence of nitrogen (N-UNCD) that exhibit charge injection capacity values as high as 163 µC cm(-2) indicating that N-UNCD is a viable material for microelectrode fabrication. Furthermore, we show that the maximum charge injection of N-UNCD can be increased by tailoring growth conditions and by subsequent electrochemical activation. For applications requiring yet higher charge injection, we show that N-UNCD electrodes can be readily metalized with platinum or iridium, further increasing charge injection capacity. Using such materials an implantable neural stimulation device fabricated from a single piece of bio-permanent material becomes feasible. This has significant advantages in terms of the physical stability and hermeticity of a long-term bionic implant.


ChemPhysChem | 2012

Recent advances in research applications of nanophase hydroxyapatite.

Kate Fox; Phong A. Tran; Nhiem Tran

Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles.


Nature Biotechnology | 2016

Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity

Thomas J. Oxley; Nicholas L. Opie; Sam E. John; Gil S. Rind; Stephen M. Ronayne; Tracey Wheeler; Jack W. Judy; Alan James McDonald; Anthony Dornom; Timothy John Haynes Lovell; Christopher Steward; David J. Garrett; Bradford A. Moffat; E. Lui; Nawaf Yassi; Bruce C.V. Campbell; Yan T. Wong; Kate Fox; Ewan S. Nurse; Iwan E. Bennett; Sébastien H. Bauquier; Kishan Liyanage; Nicole R. van der Nagel; Piero Perucca; Arman Ahnood; Katherine P. Gill; Bernard Yan; Leonid Churilov; Chris French; Patricia Desmond

High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions.


ACS Applied Materials & Interfaces | 2014

Development of a Templated Approach to Fabricate Diamond Patterns on Various Substrates

Olga Shimoni; Jiri Cervenka; Timothy J. Karle; Kate Fox; Brant C. Gibson; Snjezana Tomljenovic-Hanic; Andrew D. Greentree; Steven Prawer

We demonstrate a robust templated approach to pattern thin films of chemical vapor deposited nanocrystalline diamond grown from monodispersed nanodiamond (mdND) seeds. The method works on a range of substrates, and we herein demonstrate the method using silicon, aluminum nitride (AlN), and sapphire substrates. Patterns are defined using photo- and e-beam lithography, which are seeded with mdND colloids and subsequently introduced into microwave assisted chemical vapor deposition reactor to grow patterned nanocrystalline diamond films. In this study, we investigate various factors that affect the selective seeding of different substrates to create high quality diamond thin films, including mdND surface termination, zeta potential, surface treatment, and plasma cleaning. Although the electrostatic interaction between mdND colloids and substrates is the main process driving adherence, we found that chemical reaction (esterification) or hydrogen bonding can potentially dominate the seeding process. Leveraging the knowledge on these different interactions, we optimize fabrication protocols to eliminate unwanted diamond nucleation outside the patterned areas. Furthermore, we have achieved the deposition of patterned diamond films and arrays over a range of feature sizes. This study contributes to a comprehensive understanding of the mdND-substrate interaction that will enable the fabrication of integrated nanocrystalline diamond thin films for microelectronics, sensors, and tissue culturing applications.


Journal of Materials Science: Materials in Medicine | 2013

Diamond as a scaffold for bone growth

Kate Fox; Joseph E.A. Palamara; Roy Judge; Andrew D. Greentree

Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.


ACS Nano | 2017

Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds

Philipp Reineck; Desmond W. M. Lau; Emma R. Wilson; Kate Fox; Matthew R. Field; Cholaphan Deeleepojananan; Vadym Mochalin; Brant C. Gibson

Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.


Materials | 2015

Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

Morteza Aramesh; Wei Tong; Kate Fox; Ann M. Turnley; Dong Seo; Steven Prawer; K. Ostrikov

A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.


Biosensors and Bioelectronics | 2016

Diamond encapsulated photovoltaics for transdermal power delivery

Arman Ahnood; Kate Fox; Nicholas V. Apollo; Alexander Lohrmann; David J. Garrett; David A. X. Nayagam; Timothy J. Karle; Alastair Stacey; Keren M. Abberton; Wayne A. Morrison; Andrew Blakers; Steven Prawer

A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980 nm is identified as the optimum operating point based on the PV cells external quantum efficiency, the skins transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7 W/cm(2), a peak output power of 2.7 mW is delivered to the implant with an active PV cell dimension of 1.5 × 1.5 × 0.06 mm(3). This corresponds to a volumetric power output density of ~20 mW/mm(3), significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants.


Artificial Organs | 2016

Development of a Magnetic Attachment Method for Bionic Eye Applications

Kate Fox; Hamish Meffin; Owen Burns; Carla J. Abbott; Penelope J. Allen; Nicholas L. Opie; Ceara McGowan; Jonathan Yeoh; Arman Ahnood; Chi D. Luu; Rosemary Cicione; Alexia L. Saunders; Michelle McPhedran; Lisa Cardamone; Joel Villalobos; David J. Garrett; David A. X. Nayagam; Nicholas V. Apollo; Kumaravelu Ganesan; Mohit N. Shivdasani; Alastair Stacey; Mathilde Escudie; Samantha Lichter; Robert K. Shepherd; Steven Prawer

Successful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes.

Collaboration


Dive into the Kate Fox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arman Ahnood

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phong A. Tran

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wei Tong

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge