Katharina Fucke
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katharina Fucke.
Angewandte Chemie | 2014
Shubhankar Kumar Bose; Katharina Fucke; Lei Liu; Patrick G. Steel; Todd B. Marder
A new catalytic system based on a Zn(II) NHC precursor has been developed for the cross-coupling reaction of alkyl halides with diboron reagents, which represents a novel use of a Group XII catalyst for CX borylation. This approach gives borylations of unactivated primary, secondary, and tertiary alkyl halides at room temperature to furnish alkyl boronates, with good functional-group compatibility, under mild conditions. Preliminary mechanistic investigations demonstrated that this borylation reaction seems to involve one-electron processes.
Angewandte Chemie | 2014
Christina Rest; María Mayoral; Katharina Fucke; Jennifer Schellheimer; Vladimir Stepanenko; Gustavo Fernández
Weak C-H···X hydrogen bonds are important stabilizing forces in crystal engineering and anion recognition in solution. In contrast, their quantitative influence on the stabilization of supramolecular polymers or gels has thus far remained unexplored. Herein, we report an oligophenyleneethynylene (OPE)-based amphiphilic Pt(II) complex that forms supramolecular polymeric structures in aqueous and polar media driven by π-π and different weak C-H···X (X=Cl, O) interactions involving chlorine atoms attached to the Pt(II) centers as well as oxygen atoms and polarized methylene groups belonging to the peripheral glycol chains. A collection of experimental techniques (UV/Vis, 1D and 2D NMR, DLS, AFM, SEM, and X-Ray diffraction) demonstrate that the interplay between different weak noncovalent interactions leads to the cooperative formation of self-assembled structures of high aspect ratio and gels in which the molecular arrangement is maintained in the crystalline state.
Chemistry: A European Journal | 2015
Zuolun Zhang; Robert M. Edkins; Joern Nitsch; Katharina Fucke; Antonius Eichhorn; Andreas Steffen; Yue Wang; Todd B. Marder
The push-pull character of a series of donor-bithienyl-acceptor compounds has been tuned by adopting triphenylamine or 1,1,7,7-tetramethyljulolidine as a donor and B(2,6-Me2 -4-RC6 H2)2 (R=Me, C6 F5 or 3,5-(CF3)2 C6 H3) or B[2,4,6-(CF3 )3 C6 H2]2 as an acceptor. Ir-catalyzed C-H borylation was utilized in the derivatization of the boryl acceptors and the tetramethyljulolidine donor. The donor and acceptor strengths were evaluated by electrochemical and photophysical measurements. In solution, the compound with the strongest acceptor, B[2,4,6-(CF3)3 C6 H2]2 ((FMes)2 B), has strongly quenched emission, while all other compounds show efficient green to red (ΦF =0.80-1.00) or near-IR (NIR; ΦF =0.27-0.48) emission, depending on solvent. Notably, this study presents the first examples of efficient NIR emission from three-coordinate boron compounds. Efficient solid-state red emission was observed for some derivatives, and interesting aggregation-induced emission of the (FMes)2 B-containing compound was studied. Moreover, each compound showed a strong and clearly visible response to fluoride addition, with either a large emission-color change or turn-on fluorescence.
Chemistry: A European Journal | 2014
Jonathan A. Foster; Robert M. Edkins; Gary J. Cameron; Neil Colgin; Katharina Fucke; Sam Ridgeway; Andrew G. Crawford; Todd B. Marder; Andrew Beeby; Steven L. Cobb; Jonathan W. Steed
Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1-and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution.
New Journal of Chemistry | 2012
Katharina Fucke; S. A. Myz; T. P. Shakhtshneider; Elena V. Boldyreva; Ulrich J. Griesser
Co-crystallisation of two components into one crystal form can enhance the solid-state properties of drug compounds. A plethora of crystallisation methods has been applied to co-crystallisation and the reported study compares the three most common ones (crystallisation from the melt, from solution and solvent-drop grinding) with respect to their applicability and necessity for a co-crystal screening. Piroxicam, a non-steroidal anti-inflammatory drug, was chosen as a model system and submitted to an extensive co-crystal screening using twenty different acids as co-crystal formers, six crystallisation techniques and five solvents. A total of 46 co-crystal forms were obtained, 38 of which are novel. Solvent-drop grinding showed the highest absolute number of experiments resulting in co-crystals, while crystallisation from the melt yielded the highest number of co-crystal formation when crystalline material was obtained. Evaporation resulted in a high number of crystalline products but many of those were binary and ternary mixtures of crystal forms. Cooling and precipitation techniques gave only poor results. Acetone and THF showed the highest number of crystalline products while chloroform gave the highest relative yield of co-crystals. Ethanol and acetonitrile showed extensive hydrate formation. No influence of the co-crystal former on the co-crystal formation could be detected.
Chemistry: A European Journal | 2014
Lei Ji; Robert M. Edkins; Laura J. Sewell; Andrew Beeby; Andrei S. Batsanov; Katharina Fucke; Martin Drafz; Judith A. K. Howard; Odile Moutounet; Fatima Ibersiene; Abdou Boucekkine; Eric Furet; Zhiqiang Liu; Jean-François Halet; Claudine Katan; Todd B. Marder
Quadrupolar oligothiophene chromophores composed of four to five thiophene rings with two terminal (E)-dimesitylborylvinyl groups (4 V-5 V), and five thiophene rings with two terminal aryldimesitylboryl groups (5 B), as well as an analogue of 5 V with a central EDOT ring (5 VE), have been synthesized via Pd-catalyzed cross-coupling reactions in high yields (66-89%). Crystal structures of 4 V, 5 B, bithiophene 2 V, and five thiophene-derived intermediates are reported. Chromophores 4 V, 5 V, 5 B and 5 VE have photoluminescence quantum yields of 0.26-0.29, which are higher than those of the shorter analogues 1 V-3 V (0.01-0.20), and short fluorescence lifetimes (0.50-1.05 ns). Two-photon absorption (TPA) spectra have been measured for 2 V-5 V, 5 B and 5 VE in the range 750-920 nm. The measured TPA cross-sections for the series 2 V-5 V increase steadily with length up to a maximum of 1930 GM. We compare the TPA properties of 2 V-5 V with the related compounds 5 B and 5 VE, giving insight into the structure-property relationship for this class of chromophore. DFT and TD-DFT results, including calculated TPA spectra, complement the experimental findings and contribute to their interpretation. A comparison to other related thiophene and dimesitylboryl compounds indicates that our design strategy is promising for the synthesis of efficient dyes for two-photon-excited fluorescence applications.
Pharmaceutical Research | 2008
Kyriakos Kachrimanis; Katharina Fucke; Michael F. Noisternig; Bernd Siebenhaar; Ulrich J. Griesser
PurposeAt high relative humidity (RH), orthorhombic paracetamol (form II) crystallized from ethanol transforms to monoclinic (form I) faster than such crystallized from the melt. The present study attempts to elucidate the reasons for this difference in stability.MethodsThe transformation of form II was investigated by powder X-ray diffraction, optical microscopy, gravimetric moisture sorption, thermogravimetry, and vibrational spectroscopy.ResultsSolution-grown form II was found to be always contaminated with form I nuclei but still transforms much faster than corresponding physical mixtures of the pure forms in high RH, at a rate that is depending on the RH and the size of the crystals. A 0.1–0.6% w/w mass loss, inversely related to the initial monoclinic content, was observed during transformation of solution-grown form II, and was found to be due to residual ethanol that could not be removed by grinding, indicating incorporation by a solid solution mechanism.ConclusionsMoisture triggers the growth of existing form I nuclei but it exerts a weaker effect on nucleation, and the presence of residual ethanol greatly accelerates the transformation.
Chemistry: A European Journal | 2015
Katharina Fucke; Garry J. McIntyre; Marie Helene Lemee-Cailleau; Clive Wilkinson; Alison J. Edwards; Judith A. K. Howard; Jonathan W. Steed
Diatrizoic acid (DTA), a clinically used X-ray contrast agent, crystallises in two hydrated, three anhydrous and nine solvated solid forms, all of which have been characterised by X-ray crystallography. Single-crystal neutron structures of DTA dihydrate and monosodium DTA tetrahydrate have been determined. All of the solid-state structures have been analysed using partial atomic charges and hardness algorithm (PACHA) calculations. Even though in general all DTA crystal forms reveal similar intermolecular interactions, the overall crystal packing differs considerably from form to form. The water of the dihydrate is encapsulated between a pair of host molecules, which calculations reveal to be an extraordinarily stable motif. DTA presents functionalities that enable hydrogen and halogen bonding, and whilst an extended hydrogen-bonding network is realised in all crystal forms, halogen bonding is not present in the hydrated crystal forms. This is due to the formation of a hydrogen-bonding network based on individual enclosed water squares, which is not amenable to the concomitant formation of halogen bonds. The main interaction in the solvates involves the carboxylic acid, which corroborates the hypothesis that this strong interaction is the last one to be broken during the crystal desolvation and nucleation process.
Chemical Communications | 2012
Katharina Fucke; Judith A. K. Howard; Jonathan W. Steed
We present three crystal structures of diatrizoic acid (DTA) DMSO solvates illustrating progressive desolvation of the DTA molecule and concomitant increasing degree of DTA self-association. Using these structures, plausible pathways for overcoming the solvation shell of DTA during its crystallisation from solution are discussed.
Physical Chemistry Chemical Physics | 2013
Robert M. Edkins; Michael R. Probert; Katharina Fucke; Craig M. Robertson; Judith A. K. Howard; Andrew Beeby
Following the recent report of Abe and co-workers (Phys. Chem. Chem. Phys., 2012, 14, 5855) of the isolation of a bridging peroxide of a naphthalene-tethered bisimidazolyl diradical, it is reported herein that this degradation pathway is a more general phenomenon for the chromic dimers of 2,4,5-triphenylimidazolyl radical (TPIR) materials, with non-tethered TPIRs forming similar oxygen adducts. The peroxides of two derivatives have been characterised by single crystal X-ray diffraction (SC-XRD) and it is identified that the 4-position of the imidazolyl ring is the site susceptible to reaction with oxygen. Furthermore, mass spectrometry has been used to show that for a range of five known, non-tethered derivatives, peroxide formation can be detected within 30 minutes when samples are irradiated under an oxygen atmosphere, thus presenting a significant challenge to the long term use of this class of material in colour-switching device applications.