Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharine Ricke is active.

Publication


Featured researches published by Katharine Ricke.


Nature | 2016

Reversal of ocean acidification enhances net coral reef calcification

Rebecca Albright; Lilian Caldeira; Jessica Hosfelt; Lester Kwiatkowski; Jana K. Maclaren; B. Mason; Yana Nebuchina; Aaron Ninokawa; Julia Pongratz; Katharine Ricke; Tanya Rivlin; Kenneth Schneider; Marine Sesboüé; Kathryn Shamberger; Jacob Silverman; Kennedy Wolfe; Kai Zhu; Ken Caldeira

Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32−]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32−], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.


Climatic Change | 2012

A simple model to account for regional inequalities in the effectiveness of solar radiation management

Juan Moreno-Cruz; Katharine Ricke; David W. Keith

We present a simple model to account for the potential effectiveness of solar radiation management (SRM) in compensating for anthropogenic climate change. This method provides a parsimonious way to account for regional inequality in the assessment of SRM effectiveness and allows policy and decision makers to examine the linear climate response to different SRM configurations. To illustrate how the model works, we use data from an ensemble of modeling experiments conducted with a general circulation model (GCM). We find that an SRM scheme optimized to restore population-weighted temperature changes to their baseline compensates for 99% of these changes while an SRM scheme optimized for population-weighted precipitation changes compensates for 97% of these changes. Hence, while inequalities in the effectiveness of SRM are important, they may not be as severe as it is often assumed.


Environmental Research Letters | 2014

A multi-model assessment of regional climate disparities caused by solar geoengineering

Ben Kravitz; Douglas G. MacMartin; Alan Robock; Philip J. Rasch; Katharine Ricke; Jason N. S. Cole; Charles L. Curry; Peter J. Irvine; Duoying Ji; David W. Keith; Jón Egill Kristjánsson; John C. Moore; Helene Muri; Balwinder Singh; Simone Tilmes; Shingo Watanabe; Shuting Yang; Jin-Ho Yoon

Global-scale solar geoengineering is the deliberate modification of the climate system to offset some amount of anthropogenic climate change by reducing the amount of incident solar radiation at the surface. These changes to the planetary energy budget result in differential regional climate effects. For the first time, we quantitatively evaluate the potential for regional disparities in a multi-model context using results from a model experiment that offsets the forcing from a quadrupling of CO2 via reduction in solar irradiance. We evaluate temperature and precipitation changes in 22 geographic regions spanning most of Earthʼs continental area. Moderate amounts of solar reduction (up to 85% of the amount that returns global mean temperatures to preindustrial levels) result in regional temperature values that are closer to preindustrial levels than an un-geoengineered, high CO2 world for all regions and all models. However, in all but one model, there is at least one region for which no amount of solar reduction can restore precipitation toward its preindustrial value. For most metrics considering simultaneous changes in both variables,


Environmental Research Letters | 2014

Maximum warming occurs about one decade after a carbon dioxide emission

Katharine Ricke; Ken Caldeira

It is known that carbon dioxide emissions cause the Earth to warm, but no previous study has focused on examining how long it takes to reach maximum warming following a particular CO2 emission. Using conjoined results of carbon-cycle and physical-climate model intercomparison projects (Taylor et al 2012, Joos et al 2013), we find the median time between an emission and maximum warming is 10.1 years, with a 90% probability range of 6.6–30.7 years. We evaluate uncertainties in timing and amount of warming, partitioning them into three contributing factors: carbon cycle, climate sensitivity and ocean thermal inertia. If uncertainty in any one factor is reduced to zero without reducing uncertainty in the other factors, the majority of overall uncertainty remains. Thus, narrowing uncertainty in century-scale warming depends on narrowing uncertainty in all contributing factors. Our results indicate that benefit from avoided climate damage from avoided CO2 emissions will be manifested within the lifetimes of people who acted to avoid that emission. While such avoidance could be expected to benefit future generations, there is potential for emissions avoidance to provide substantial benefit to current generations.


Environmental Research Letters | 2013

Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

Katharine Ricke; James C. Orr; Kenneth Schneider; Ken Caldeira

Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results.


Environmental Research Letters | 2013

Strategic incentives for climate geoengineering coalitions to exclude broad participation

Katharine Ricke; Juan Moreno-Cruz; Ken Caldeira

Solar geoengineering is the deliberate reduction in the absorption of incoming solar radiation by the Earth’s climate system with the aim of reducing impacts of anthropogenic climate change. Climate model simulations project a diversity of regional outcomes that vary with the amount of solar geoengineering deployed. It is unlikely that a single small actor could implement and sustain global-scale geoengineering that harms much of the world without intervention from harmed world powers. However, a sufficiently powerful international coalition might be able to deploy solar geoengineering. Here, we show that regional differences in climate outcomes create strategic incentives to form coalitions that are as small as possible, while still powerful enough to deploy solar geoengineering. The characteristics of coalitions to geoengineer climate are modeled using a ‘global thermostat setting game’ based on climate model results. Coalition members have incentives to exclude non-members that would prevent implementation of solar geoengineering at a level that is optimal for the existing coalition. These incentives differ markedly from those that dominate international politics of greenhouse-gas emissions reduction, where the central challenge is to compel free riders to participate.


Environmental Research Letters | 2015

Atmospheric consequences of disruption of the ocean thermocline

Lester Kwiatkowski; Katharine Ricke; Ken Caldeira

Technologies utilizing vertical ocean pipes have been proposed as a means to avoid global warming, either by providing a source of clean energy, increasing ocean carbon uptake, or storing thermal energy in the deep ocean. However, increased vertical transport of water has the capacity to drastically alter the ocean thermocline. To help bound potential climate consequences of these activities, we perform a set of simulations involving idealized disruption of the ocean thermocline by greatly increasing vertical mixing in the upper ocean. We use an Earth System Model (ESM) to evaluate the likely thermal and hydrological response of the atmosphere to this scenario. In our model, increased vertical transport in the upper ocean decreases upward shortwave and longwave radiation at the top-of-the-atmosphere due primarily to loss of clouds and sea-ice over the ocean. This extreme scenario causes an effective radiative forcing of ≈15.5–15.9 W m−2, with simulations behaving on multi-decadal time scales as if they are approaching an equilibrium temperature ≈8.6–8.8 °C higher than controls. Within a century, this produces higher global mean surface temperatures than would have occurred in the absence of increased vertical ocean transport. In our simulations, disruption of the thermocline strongly cools the lower atmosphere over the ocean, resulting in high pressure anomalies. The greater land-sea pressure contrast is found to increase water vapour transport from ocean to land in the lower atmosphere and therefore increase global mean precipitation minus evaporation (P–E) over land; however, many high latitude regions and some low latitude regions experience decreased P–E. Any real implementation of ocean pipe technologies would damage the thermal structure of the ocean to a lesser extent than simulated here; nevertheless, our simulations indicate the likely sign and character of unintended atmospheric consequences of such ocean technologies. Prolonged application of ocean pipe technologies, rather than avoiding global warming, could exacerbate long-term warming of the climate system.


Scientific Reports | 2017

Constraints on global temperature target overshoot

Katharine Ricke; Richard J. Millar; Douglas G. MacMartin

In the aftermath of the Paris Agreement, the climate science and policy communities are beginning to assess the feasibility and potential benefits of limiting global warming to 1.5 °C or 2 °C above preindustrial. Understanding the dependence of the magnitude and duration of possible temporary exceedance (i.e., “overshoot”) of temperature targets on sustainable energy decarbonization futures and carbon dioxide (CO2) removal rates will be an important contribution to this policy discussion. Drawing upon results from the mitigation literature and the IPCC Working Group 3 (WG3) scenario database, we examine the global mean temperature implications of differing, independent pathways for the decarbonization of global energy supply and the implementation of negative emissions technologies. We find that within the scope of scenarios broadly-consistent with the WG3 database, the magnitude of temperature overshoot is more sensitive to the rate of decarbonization. However, limiting the duration of overshoot to less than two centuries requires ambitious deployment of both decarbonization and negative emissions technology. The dependencies of temperature target overshoot’s properties upon currently untested negative emissions technologies suggests that it will be important to consider how climate impacts depend on both the magnitude and duration of overshoot, not just long term residual warming.


Nature Climate Change | 2018

Country-level social cost of carbon

Katharine Ricke; Laurent Drouet; Ken Caldeira; Massimo Tavoni

The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages from carbon dioxide (CO2) emissions. Although useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damage and vast differences in country-level contributions to the global SCC, as well as climate and socio-economic uncertainties, which are larger at the regional level. Here we estimate country-level contributions to the SCC using recent climate model projections, empirical climate-driven economic damage estimations and socio-economic projections. Central specifications show high global SCC values (median, US


Nature Geoscience | 2010

Regional climate response to solar-radiation management

Katharine Ricke; M. Granger Morgan; Myles R. Allen

417 per tonne of CO2 (tCO2); 66% confidence intervals, US

Collaboration


Dive into the Katharine Ricke's collaboration.

Top Co-Authors

Avatar

Ken Caldeira

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

M. Granger Morgan

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Apt

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Juan Moreno-Cruz

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth Schneider

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Lester Kwiatkowski

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Aaron Ninokawa

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge