Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine E. Battle is active.

Publication


Featured researches published by Katherine E. Battle.


Nature | 2015

The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015

Samir Bhatt; Daniel J. Weiss; Ewan Cameron; Donal Bisanzio; Bonnie Mappin; Ursula Dalrymple; Katherine E. Battle; Catherine L. Moyes; Andrew J Henry; Philip A. Eckhoff; Edward A. Wenger; Olivier J. T. Briët; Melissa A. Penny; Thomas Smith; Adam Bennett; Joshua Yukich; Thomas P. Eisele; Jamie T. Griffin; Cristin A Fergus; Matt Lynch; Finn Lindgren; Justin M. Cohen; C L J Murray; David L. Smith; Simon I. Hay; Richard Cibulskis; Peter W. Gething

Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.


PLOS Neglected Tropical Diseases | 2012

A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010

Peter W. Gething; Iqbal Elyazar; Catherine L. Moyes; David L. Smith; Katherine E. Battle; Carlos A. Guerra; Anand P. Patil; Andrew J. Tatem; Rosalind E. Howes; Monica F. Myers; Dylan B. George; Peter Horby; Heiman Wertheim; Ric N. Price; Ivo Mueller; J. Kevin Baird; Simon I. Hay

Background Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite. Methodology and Findings We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1–99 year age range (PvPR1–99) within every 5×5 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR1–99. The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR. Conclusions and Significance This detailed depiction of spatially varying endemicity is intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. vivax control and elimination.


PLOS Pathogens | 2012

Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens

David L. Smith; Katherine E. Battle; Simon I. Hay; Christopher M. Barker; Thomas W. Scott; F. Ellis McKenzie

Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various “Ross-Macdonald” mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955–1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention.


Trends in Microbiology | 2014

Global spread of dengue virus types: Mapping the 70 year history

Jane P. Messina; Oliver J. Brady; Thomas W. Scott; Chenting Zou; David M Pigott; Kirsten A. Duda; Samir Bhatt; Leah C. Katzelnick; Rosalind E. Howes; Katherine E. Battle; Cameron P. Simmons; Simon I. Hay

Highlights • The geography of type-specific global DENV circulation has not been well described.• We map the global distribution and co-circulation of each DENV type from 1943 to 2013.• Detection of all types has expanded worldwide together with growing hyperendemicity.• There remains a dearth of type-specific information in many parts of the world.


PLOS Medicine | 2012

G6PD Deficiency Prevalence and Estimates of Affected Populations in Malaria Endemic Countries: A Geostatistical Model-Based Map

Rosalind E. Howes; Frédéric B. Piel; Anand P. Patil; Oscar A. Nyangiri; Peter W. Gething; Mewahyu Dewi; Mariana M. Hogg; Katherine E. Battle; Carmencita D. Padilla; J. Kevin Baird; Simon I. Hay

Rosalind Howes and colleagues present a map of glucose-6-phosphate dehydrogenase deficiency prevalence and severity. Individuals with the deficiency are at risk of mild to severe hemolysis when taking the antimalarial primaquine.


Advances in Parasitology | 2013

G6PD Deficiency: Global Distribution, Genetic Variants and Primaquine Therapy

Rosalind E. Howes; Katherine E. Battle; Ari W. Satyagraha; J K Baird; Simon I. Hay

Glucose-6-phosphate dehydrogenase (G6PD) is a potentially pathogenic inherited enzyme abnormality and, similar to other human red blood cell polymorphisms, is particularly prevalent in historically malaria endemic countries. The spatial extent of Plasmodium vivax malaria overlaps widely with that of G6PD deficiency; unfortunately the only drug licensed for the radical cure and relapse prevention of P. vivax, primaquine, can trigger severe haemolytic anaemia in G6PD deficient individuals. This chapter reviews the past and current data on this unique pharmacogenetic association, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden. G6PD deficiency is a highly variable disorder, in terms of spatial heterogeneity in prevalence and molecular variants, as well as its interactions with P. vivax and primaquine. Consideration of factors including aspects of basic physiology, diagnosis, and clinical triggers of primaquine-induced haemolysis is required to assess the risks and benefits of applying primaquine in various geographic and demographic settings. Given that haemolytically toxic antirelapse drugs will likely be the only therapeutic options for the coming decade, it is clear that we need to understand in depth G6PD deficiency and primaquine-induced haemolysis to determine safe and effective therapeutic strategies to overcome this hurdle and achieve malaria elimination.


Philosophical Transactions of the Royal Society B | 2013

Global mapping of infectious disease

Simon I. Hay; Katherine E. Battle; David M Pigott; David L. Smith; Catherine L. Moyes; Samir Bhatt; John S. Brownstein; Nigel Collier; Monica F. Myers; Dylan B. George; Peter W. Gething

The primary aim of this review was to evaluate the state of knowledge of the geographical distribution of all infectious diseases of clinical significance to humans. A systematic review was conducted to enumerate cartographic progress, with respect to the data available for mapping and the methods currently applied. The results helped define the minimum information requirements for mapping infectious disease occurrence, and a quantitative framework for assessing the mapping opportunities for all infectious diseases. This revealed that of 355 infectious diseases identified, 174 (49%) have a strong rationale for mapping and of these only 7 (4%) had been comprehensively mapped. A variety of ambitions, such as the quantification of the global burden of infectious disease, international biosurveillance, assessing the likelihood of infectious disease outbreaks and exploring the propensity for infectious disease evolution and emergence, are limited by these omissions. An overview of the factors hindering progress in disease cartography is provided. It is argued that rapid improvement in the landscape of infectious diseases mapping can be made by embracing non-conventional data sources, automation of geo-positioning and mapping procedures enabled by machine learning and information technology, respectively, in addition to harnessing labour of the volunteer ‘cognitive surplus’ through crowdsourcing.


eLife | 2014

Global Distribution Maps of the Leishmaniases

David M Pigott; Samir Bhatt; Nick Golding; Kirsten A. Duda; Katherine E. Battle; Oliver J. Brady; Jane P. Messina; Yves Balard; Patrick Bastien; Francine Pratlong; John S. Brownstein; Clark C. Freifeld; Sumiko R. Mekaru; Peter W. Gething; Dylan B. George; Monica F. Myers; Richard Reithinger; Simon I. Hay

The leishmaniases are vector-borne diseases that have a broad global distribution throughout much of the Americas, Africa, and Asia. Despite representing a significant public health burden, our understanding of the global distribution of the leishmaniases remains vague, reliant upon expert opinion and limited to poor spatial resolution. A global assessment of the consensus of evidence for leishmaniasis was performed at a sub-national level by aggregating information from a variety of sources. A database of records of cutaneous and visceral leishmaniasis occurrence was compiled from published literature, online reports, strain archives, and GenBank accessions. These, with a suite of biologically relevant environmental covariates, were used in a boosted regression tree modelling framework to generate global environmental risk maps for the leishmaniases. These high-resolution evidence-based maps can help direct future surveillance activities, identify areas to target for disease control and inform future burden estimation efforts. DOI: http://dx.doi.org/10.7554/eLife.02851.001


Advances in Parasitology | 2012

The Global Public Health Significance of Plasmodium vivax

Katherine E. Battle; Peter W. Gething; Iqbal Elyazar; Catherine L. Moyes; Marianne E. Sinka; Rosalind E. Howes; C A Guerra; Ric N. Price; J. Kevin Baird; Simon I. Hay

Plasmodium vivax occurs globally and thrives in both temperate and tropical climates. Here, we review the evidence of the biological limits of its contemporary distribution and the global population at risk (PAR) of the disease within endemic countries. We also review the most recent evidence for the endemic level of transmission within its range and discuss the implications for burden of disease assessments. Finally, the evidence-base for defining the contemporary distribution and PAR of P. vivax are discussed alongside a description of the vectors of human malaria within the limits of risk. This information along with recent data documenting the severe morbid and fatal consequences of P. vivax infection indicates that the public health significance of P. vivax is likely to have been seriously underestimated.


The New England Journal of Medicine | 2016

Mapping Plasmodium falciparum Mortality in Africa between 1990 and 2015

Peter W. Gething; Daniel C. Casey; Daniel J. Weiss; Donal Bisanzio; Samir Bhatt; Ewan Cameron; Katherine E. Battle; Ursula Dalrymple; Jennifer Rozier; Puja C Rao; Michael Kutz; Ryan M. Barber; Chantal Huynh; Katya A. Shackelford; Matthew M. Coates; Grant Nguyen; Maya Fraser; Rachel Kulikoff; Haidong Wang; Mohsen Naghavi; David L. Smith; Christopher J. L. Murray; Simon I. Hay; Stephen S Lim

BACKGROUND Malaria control has not been routinely informed by the assessment of subnational variation in malaria deaths. We combined data from the Malaria Atlas Project and the Global Burden of Disease Study to estimate malaria mortality across sub-Saharan Africa on a grid of 5 km2 from 1990 through 2015. METHODS We estimated malaria mortality using a spatiotemporal modeling framework of geolocated data (i.e., with known latitude and longitude) on the clinical incidence of malaria, coverage of antimalarial drug treatment, case fatality rate, and population distribution according to age. RESULTS Across sub-Saharan Africa during the past 15 years, we estimated that there was an overall decrease of 57% (95% uncertainty interval, 46 to 65) in the rate of malaria deaths, from 12.5 (95% uncertainty interval, 8.3 to 17.0) per 10,000 population in 2000 to 5.4 (95% uncertainty interval, 3.4 to 7.9) in 2015. This led to an overall decrease of 37% (95% uncertainty interval, 36 to 39) in the number of malaria deaths annually, from 1,007,000 (95% uncertainty interval, 666,000 to 1,376,000) to 631,000 (95% uncertainty interval, 394,000 to 914,000). The share of malaria deaths among children younger than 5 years of age ranged from more than 80% at a rate of death of more than 25 per 10,000 to less than 40% at rates below 1 per 10,000. Areas with high malaria mortality (>10 per 10,000) and low coverage (<50%) of insecticide-treated bed nets and antimalarial drugs included much of Nigeria, Angola, and Cameroon and parts of the Central African Republic, Congo, Guinea, and Equatorial Guinea. CONCLUSIONS We estimated that there was an overall decrease of 57% in the rate of death from malaria across sub-Saharan Africa over the past 15 years and identified several countries in which high rates of death were associated with low coverage of antimalarial treatment and prevention programs. (Funded by the Bill and Melinda Gates Foundation and others.).

Collaboration


Dive into the Katherine E. Battle's collaboration.

Top Co-Authors

Avatar

Simon I. Hay

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samir Bhatt

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

David L. Smith

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Golding

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge