Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine J. Denby is active.

Publication


Featured researches published by Katherine J. Denby.


The Plant Cell | 2011

High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation

Emily Breeze; Elizabeth Harrison; Stuart McHattie; Linda Karen Hughes; Richard Hickman; Claire Hill; Steven John Kiddle; Youn-sung Kim; Christopher A. Penfold; Dafyd J. Jenkins; Cunjin Zhang; Karl Morris; Carol E. Jenner; Stephen D. Jackson; Brian Thomas; Alex Tabrett; Roxane Legaie; Jonathan D. Moore; David L. Wild; Sascha Ott; David A. Rand; Jim Beynon; Katherine J. Denby; A. Mead; Vicky Buchanan-Wollaston

This work presents a high-resolution time-course analysis of gene expression during development of a leaf from expansion through senescence. Enrichment in ontologies, sequence motifs, and transcription factor families within genes showing altered expression over time identified both metabolic pathways and potential regulators active at different stages of leaf development and senescence. Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a high-resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.


The Plant Cell | 1994

Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber.

Ian A. Graham; Katherine J. Denby; Christopher J. Leaver

We have previously proposed that metabolic status is important in the regulation of cucumber malate synthase (MS) and isocitrate lyase (ICL) gene expression during plant development. In this article, we used a cell culture system to demonstrate that intracellular metabolic status does influence expression of both of these genes. Starvation of cucumber cell cultures resulted in the coordinate induction of the expression of MS and ICL genes, and this effect was reversed when sucrose was returned to the culture media. The induction of gene expression was closely correlated with a drop in intracellular sucrose, glucose, and fructose below threshold concentrations, but it was not correlated with a decrease in respiration rate. Glucose, fructose, or raffinose in the culture media also resulted in repression of MS and ICL. Both 2-deoxyglucose and mannose, which are phosphorylated by hexokinase but not further metabolized, specifically repressed MS and ICL gene expression relative to a third glyoxylate cycle gene, malate dehydrogenase. However, the addition of 3-methylglucose, an analog of glucose that is not phosphorylated, did not result in repression of either MS or ICL. It is proposed that the signal giving rise to a change in gene expression originates from the intracellular concentration of hexose sugars or the flux of hexose sugars into glycolysis.


The Plant Cell | 2012

Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis

Oliver P. Windram; Priyadharshini Madhou; Stuart McHattie; Claire Hill; Richard Hickman; Emma J. Cooke; Dafyd J. Jenkins; Christopher A. Penfold; Laura Baxter; Emily Breeze; Steven John Kiddle; Johanna Rhodes; Susanna Atwell; Daniel J. Kliebenstein; Youn-sung Kim; Oliver Stegle; Karsten M. Borgwardt; Cunjin Zhang; Alex Tabrett; Roxane Legaie; Jonathan D. Moore; Bärbel Finkenstädt; David L. Wild; A. Mead; David A. Rand; Jim Beynon; Sascha Ott; Vicky Buchanan-Wollaston; Katherine J. Denby

The authors generated a high-resolution time series of Arabidopsis thaliana gene expression following infection with the fungal pathogen Botrytis cinerea. Computational analysis of this large data set identified the timing of specific processes and regulatory events in the host plant and showed a role for the transcription factor TGA3 in the defense response against the fungal pathogen. Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea.


FEBS Letters | 2004

Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels

Lara Donaldson; Ndiko Ludidi; Marc R. Knight; Chris Gehring; Katherine J. Denby

A guanylyl cyclase has been recently identified in Arabidopsis but, despite the use of pharmacological inhibitors to infer roles of the second messenger 3′,5′‐cyclic guanosine monophosphate (cGMP), very few measurements of actual cGMP levels in plants are available. Here, we demonstrate that cGMP levels in Arabidopsis seedlings increase rapidly (⩽5 s) and to different degrees after salt and osmotic stress, and that the increases are prevented by treatment with LY, an inhibitor of soluble guanylyl cyclases. In addition, we provide evidence to suggest that salt stress activates two cGMP signalling pathways – an osmotic, calcium‐independent pathway and an ionic, calcium‐dependent pathway.


Integrative and Comparative Biology | 2005

The Signature of Seeds in Resurrection Plants: A Molecular and Physiological Comparison of Desiccation Tolerance in Seeds and Vegetative Tissues

Nicola Illing; Katherine J. Denby; Helen Collett; Arthur Shen; Jill M. Farrant

Abstract Desiccation-tolerance in vegetative tissues of angiosperms has a polyphyletic origin and could be due to 1) appropriation of the seed-specific program of gene expression that protects orthodox seeds against desiccation, and/or 2) a sustainable version of the abiotic stress response. We tested these hypotheses by comparing molecular and physiological data from the development of orthodox seeds, the response of desiccation-sensitive plants to abiotic stress, and the response of desiccation-tolerant plants to extreme water loss. Analysis of publicly-available gene expression data of 35 LEA proteins and 68 anti-oxidant enzymes in the desiccation-sensitive Arabidopsis thaliana identified 13 LEAs and 4 anti-oxidants exclusively expressed in seeds. Two (a LEA6 and 1-cys-peroxiredoxin) are not expressed in vegetative tissues in A. thaliana, but have orthologues that are specifically activated in desiccating leaves of Xerophyta humilis. A comparison of antioxidant enzyme activity in two desiccation-sensitive species of Eragrostis with the desiccation-tolerant E. nindensis showed equivalent responses upon initial dehydration, but activity was retained at low water content in E. nindensis only. We propose that these antioxidants are housekeeping enzymes and that they are protected from damage in the desiccation-tolerant species. Sucrose is considered an important protectant against desiccation in orthodox seeds, and we show that sucrose accumulates in drying leaves of E. nindensis, but not in the desiccation-sensitive Eragrostis species. The activation of “seed-specific” desiccation protection mechanisms (sucrose accumulation and expression of LEA6 and 1-cys-peroxiredoxin genes) in the vegetative tissues of desiccation-tolerant plants points towards acquisition of desiccation tolerance from seeds.


Plant Physiology | 2012

MEDIATOR25 Acts as an Integrative Hub for the Regulation of Jasmonate-Responsive Gene Expression in Arabidopsis

V. Çevik; Brendan N. Kidd; Peijun Zhang; Claire Hill; Steve Kiddle; Katherine J. Denby; Eric B. Holub; David M. Cahill; John M. Manners; Peer M. Schenk; Jim Beynon; Kemal Kazan

The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression. In this study, we show that MED25 physically interacts with several key transcriptional regulators of the JA signaling pathway, including the APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factors OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 and ERF1 as well as the master regulator MYC2. Physical interaction detected between MED25 and four group IX AP2/ERF transcription factors was shown to require the activator interaction domain of MED25 as well as the recently discovered Conserved Motif IX-1/EDLL transcription activation motif of MED25-interacting AP2/ERFs. Using transcriptional activation experiments, we also show that OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59- and ERF1-dependent activation of PLANT DEFENSIN1.2 as well as MYC2-dependent activation of VEGETATIVE STORAGE PROTEIN1 requires a functional MED25. In addition, MED25 is required for MYC2-dependent repression of pathogen defense genes. These results suggest an important role for MED25 as an integrative hub within the Mediator complex during the regulation of JA-associated gene expression.


Molecular Plant-microbe Interactions | 2007

Basal Resistance Against Pseudomonas syringae in Arabidopsis Involves WRKY53 and a Protein with Homology to a Nematode Resistance Protein

Shane L. Murray; Robert A. Ingle; Lindsay N. Petersen; Katherine J. Denby

Basal resistance is the ultimately unsuccessful plant defense response to infection with a virulent pathogen. It is thought to be triggered by host recognition of pathogen-associated molecular patterns, with subsequent suppression of particular components by pathogen effectors. To identify novel components of Arabidopsis basal resistance against the bacterial pathogen Pseudomonas syringae pv. tomato, microarray expression profiling was carried out on the cirl mutant, which displays enhanced resistance against P. syringae pv. tomato. This identified two genes, At4g23810 and At2g40000, encoding the transcription factor WRKY53 and the nematode resistance protein-like HSPRO2, whose expression was upregulated in cir1 prior to pathogen infection and in wild-type plants after P. syringae pv. tomato infection. WRKY53 and HSPRO2 are positive regulators of basal resistance. Knockout mutants of both genes were more susceptible to P. syringae pv. tomato infection than complemented lines, with increased growth of the pathogen in planta. WRKY53 and HSPRO2 appear to function downstream of salicylic acid and to be negatively regulated by signaling through jasmonic acid and ethylene.


Plant Journal | 2013

A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves

Richard Hickman; Claire Hill; Christopher A. Penfold; Emily Breeze; Laura Bowden; Jonathan D. Moore; Peijun Zhang; Alison C. Jackson; Emma J. Cooke; Findlay Bewicke-Copley; A. Mead; Jim Beynon; David L. Wild; Katherine J. Denby; Sascha Ott; Vicky Buchanan-Wollaston

Summary A model is presented describing the gene regulatory network surrounding three similar NAC transcription factors that have roles in Arabidopsis leaf senescence and stress responses. ANAC019, ANAC055 and ANAC072 belong to the same clade of NAC domain genes and have overlapping expression patterns. A combination of promoter DNA/protein interactions identified using yeast 1-hybrid analysis and modelling using gene expression time course data has been applied to predict the regulatory network upstream of these genes. Similarities and divergence in regulation during a variety of stress responses are predicted by different combinations of upstream transcription factors binding and also by the modelling. Mutant analysis with potential upstream genes was used to test and confirm some of the predicted interactions. Gene expression analysis in mutants of ANAC019 and ANAC055 at different times during leaf senescence has revealed a distinctly different role for each of these genes. Yeast 1-hybrid analysis is shown to be a valuable tool that can distinguish clades of binding proteins and be used to test and quantify protein binding to predicted promoter motifs.


New Phytologist | 2015

Standards for plant synthetic biology: a common syntax for exchange of DNA parts

Nicola J. Patron; Diego Orzaez; Sylvestre Marillonnet; Heribert Warzecha; Colette Matthewman; Mark Youles; Oleg Raitskin; Aymeric Leveau; Gemma Farré; Christian Rogers; Alison G. Smith; Julian M. Hibberd; Alex A. R. Webb; James C. Locke; Sebastian Schornack; Jim Ajioka; David C. Baulcombe; Cyril Zipfel; Sophien Kamoun; Jonathan D. G. Jones; Hannah Kuhn; Silke Robatzek; H. Peter van Esse; Dale Sanders; Giles E.D. Oldroyd; Cathie Martin; Rob Field; Sarah E. O'Connor; Samantha Fox; Brande B. H. Wulff

Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.


Journal of Computational Biology | 2010

A Robust Bayesian Two-Sample Test for Detecting Intervals of Differential Gene Expression in Microarray Time Series

Oliver Stegle; Katherine J. Denby; Emma J. Cooke; David L. Wild; Zoubin Ghahramani; Karsten M. Borgwardt

Understanding the regulatory mechanisms that are responsible for an organisms response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed. While these tests answer the question whether a gene is differentially expressed, they do not explicitly address the question when a gene is differentially expressed, although this information may provide insights into the course and causal structure of regulatory programs. In this article, we propose a two-sample test for identifying intervals of differential gene expression in microarray time series. Our approach is based on Gaussian process regression, can deal with arbitrary numbers of replicates, and is robust with respect to outliers. We apply our algorithm to study the response of Arabidopsis thaliana genes to an infection by a fungal pathogen using a microarray time series dataset covering 30,336 gene probes at 24 observed time points. In classification experiments, our test compares favorably with existing methods and provides additional insights into time-dependent differential expression.

Collaboration


Dive into the Katherine J. Denby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Mead

University of Warwick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge