Kathleen L. Soole
Flinders University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathleen L. Soole.
Annual Review of Plant Biology | 2011
A. Harvey Millar; James Whelan; Kathleen L. Soole; David A. Day
Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation. We describe recent advances in our understanding of the mitochondrial respiratory machinery of cells, including the presence of a classical oxidative phosphorylation system linked to the cytosol by transporters, discussed alongside nonphosphorylating (and, therefore, non-energy conserving) bypasses that alter the efficiency of ATP synthesis and play a role in oxidative stress responses in plants. We consider respiratory regulation in the context of the contrasting roles mitochondria play in different tissues, from photosynthetic leaves to nutrient-acquiring roots. We focus on the molecular nature of this regulation at transcriptional and post-transcriptional levels that allow the respiratory apparatus of plants to help shape organ development and the response of plants to environmental stress. We highlight the challenges for future research considering spatial and temporal changes of respiration in response to changing climatic conditions.
Phytochemistry | 2009
Crystal Sweetman; Laurent G. Deluc; Grant R. Cramer; Christopher M. Ford; Kathleen L. Soole
Organic acids are present in all plants, supporting numerous and varied facets of cellular metabolism. The type of organic acid found, and the levels to which they accumulate are extremely variable between species, developmental stages and tissue types. Acidity plays important roles in the organoleptic properties of plant tissues, where examples of both enhanced and reduced palatability can be ascribed to the presence of specific organic acids. In fruits, sourness is generally attributed to proton release from acids such as citric, malic, oxalic, quinic, succinic and tartaric, while the anion forms each contribute a distinct taste. Acidity imposes a strong influence on crop quality, and is an important factor in deciding the harvest date, particularly for fruits where acidity is important for further processing, as in wine grapes. In the grape, as for many other fruits, malate is one of the most prevalent acids, and is an important participant in numerous cellular functions. The accumulation of malate is thought to be due in large part to de novo synthesis in fruits such as the grape, through metabolism of assimilates translocated from leaf tissues, as well as photosynthetic activity within the fruit itself. During ripening, the processes through which malate is catabolised are of interest for advancing metabolic understanding, as well as for potential crop enhancement through agricultural or molecular practices. A body of literature describes research that has begun to unravel the regulatory mechanisms of enzymes involved in malate metabolism during fruit development, through exploration of protein and gene transcript levels. Datasets derived from a series of recent microarray experiments comparing transcript levels at several stages of grape berry development have been revisited, and are presented here with a focus on transcripts associated with malate metabolism. Developmental transcript patterns for enzymes potentially involved in grape malate metabolism have shown that some flux may occur through pathways that are less commonly regarded in ripening fruit, such as aerobic ethanol production. The data also suggest pyruvate as an important intermediate during malate catabolism in fruit. This review will combine an analysis of microarray data with information available on protein and enzyme activity patterns in grapes and other fruits, to explore pathways through which malate is conditionally metabolised, and how these may be controlled in response to developmental and climatic changes. Currently, an insufficient understanding of the complex pathways through which malate is degraded, and how these are regulated, prevents targeted genetic manipulation aimed at modifying fruit malate metabolism in response to environmental conditions.
Archive | 2004
A Umbach; Kathleen L. Soole; P M Finnegan
The so-called “alternative” electron transport protems, the rotenone-insensitive NAD(P)H dehydrogenases and the alternative oxidase, distinguish the inner membrane of plant mitochondria from its animal counterpart. These proteins provide plant tissues possessing them with the potential to modulate the efficiency with which energy is conserved by respiratory electron transport. The activities associated with these enzymes have intrigued scientists from at least 1778, when Lamarck commented on the thermogenesis displayed by some highly specialized flowers, a process in which alternative electron transport proteins are now known to have an important role. In more recent times, many studies have been undertaken to determine the nature of the alternative electron transport proteins and to understand their role in plant physiology. We discuss, within a historical perspective, our current understanding of the biochemistry and molecular biology of the enzymes, including their biochemical regulation. We also discuss the possible roles of the enzymes in the normal and stress physiology of plants, and the physiological interactions of the enzymes with each other and the classical respiratory pathway.
Plant and Soil | 2009
Graham Lyons; Yusuf Genc; Kathleen L. Soole; James Stangoulis; F. Liu; Robin D. Graham
Selenium (Se) is essential for humans and animals but is not considered to be essential for higher plants. Although researchers have found increases in vegetative growth due to fertiliser Se, there has been no definitive evidence to date of increased reproductive capacity, in terms of seed production and seed viability. The aim of this study was to evaluate seed production and growth responses to a low dose of Se (as sodium selenite, added to solution culture) compared to very low-Se controls in fast-cycling Brassica rapa L. Although there was no change in total biomass, Se treatment was associated with a 43% increase in seed production. The Se-treated Brassica plants had higher total respiratory activity in leaves and flowers, which may have contributed to higher seed production. This study provides additional evidence for a beneficial role for Se in higher plants.
Marine Pollution Bulletin | 2001
John Edwards; Ks Edyvane; V.A Boxall; M. Hamann; Kathleen L. Soole
Port Pirie is the site of the largest lead smelter in the world, depositing 250 t of zinc, and 100 t of lead annually into Spencer Gulf. Barker Inlet is adjacent to metropolitan Adelaide, and receives unknown quantities of urban and industrial discharges. Both areas are sites of major commercial and recreational fisheries, contained within delicately balanced marine wetland ecosystems, comprising large areas of mangrove and seagrass habitats. Aldrichetta forsteri and Sillago schomburgkii are major species within these fisheries and as estuarine-dependent species were chosen for this study as indicator species for the detection and monitoring of pollutant impacts in the nearshore marine ecosystems of South Australia. Seston sediment collectors were deployed at each site and analysed seasonally for the presence of cadmium, lead and copper. Flesh samples from A. forsteri and S. schomburgkii were examined seasonally for the presence of cadmium, lead and copper and the results correlated with levels found in the seston sediment at each site. Metal concentrations were also correlated with a biomarker of genotoxicity measured in the same animals (micronuclei in erythrocytes) that were reported previously. Seston levels of cadmium, lead and copper were highest at Port Pirie, followed by Barker Inlet and were lowest at Wills Creek, with cadmium undetectable at the latter site. Metals in seston varied considerably with season, with generally higher levels in winter samples. In fish flesh, metal levels followed broadly similar trends as for seston. Spearman rank correlations between metals in seston and in flesh were strongly positive. There was also a significant correlation between flesh concentrations of each metal and the frequency of micronuclei in erythrocytes. This study has shown that seston concentration of pollutant metals are high in areas of industrial activity, and that these levels are also reflected in metal content of fish flesh. Mean flesh levels of cadmium and copper did not exceed Australian health based maximum permitted levels of fish for human consumption, whereas flesh levels of lead in fish from Port Pirie and Barker Inlet exceeded these standards in each of the seasons monitored. This may represent a significant dietary source of lead in humans, especially at Port Pirie where human lead exposure from terrestrial sources is important. There may also be the potential for accumulation of metals in residents of metropolitan Adelaide whose diets are high in fish (and/or crustaceans), particularly estuarine-dependent species, such as A. forsteri and S. schomburgkii. The study also showed that a non-specific biomarker of genotoxicity (micronuclei in erythrocytes) is potentially useful as a monitoring technique in fish species to evaluate their exposure and genotoxic responses to pollutants in South Australian waters. These data represent a snapshot of the current situation in this area and may act as background levels against which future improvements or decrements in water quality may be compared.
Physiologia Plantarum | 2009
Chevaun Smith; Vanessa Melino; Crystal Sweetman; Kathleen L. Soole
The growth and development of plants can be limited by environmental stresses such as salinity. It has been suggested that the non-phosphorylating alternative respiratory pathway in plants, mediated by the NAD(P)H dehydrogenase [NAD(P)H DH] and alternative oxidase (AOX), is important during environmental stresses. The involvement of this alternative pathway in a stress response may be linked to its capacity to uncouple carbon metabolism from adenylate control and/or the minimization of the formation of destructive reactive oxygen species (ROS). Salinity stress is a widespread, adverse environmental stress, which leads to an ionic imbalance, hyperosmotic stress and oxidative stress, the latter being the result of ROS formation. In this study, we show that salinity stress of Arabidopsis thaliana plants resulted in the formation of ROS, increased levels of Na+ in both the shoot and the root and an increase in transcription of Ataox1a, Atndb2 and Atndb4 genes, indicating the formation of an abridged non-phosphorylating electron transport chain in response to salinity stress. Furthermore, plants constitutively over-expressing Ataox1a, with increased AOX capacity, showed lower ROS formation, 30-40% improved growth rates and lower shoot Na+ content compared with controls, when grown under salinity stress conditions. Thus, more active AOX in roots and shoots can improve the salt tolerance of Arabidopsis as defined by its ability to grow more effectively in the presence of NaCl, and maintain lower shoot Na+ content. AOX does have an important role in stress adaptation in plants, and these results provide some validation of the hypothesis that AOX can play a critical role in cell re-programming under salinity stress.
Plant Molecular Biology | 2010
Jake D. Dunlevy; Kathleen L. Soole; Michael V. Perkins; Eric G. Dennis; Robert A. Keyzers; Curtis M. Kalua; Paul K. Boss
Methoxypyrazines (MPs) are volatile, grape-derived aroma compounds that contribute to the distinct herbaceous characters of some wines. Although the full pathway leading to MP production has not been elucidated, there is strong evidence that the final step involves the methylation of non-volatile hydroxypyrazine (HP) precursors. Two cDNA encoding O-methyltransferases (OMTs) that have homology to an enzyme previously purified and shown to catalyse the methylation of HPs were isolated from Cabernet Sauvignon. Recombinant protein from the cDNAs (VvOMT1 and VvOMT2) was produced in E. coli and activity assays demonstrated that both encode OMTs able to methylate HPs to produce MPs, however both showed greatest activity against the flavonol quercetin. VvOMT1 has higher catalytic activity against isobutyl hydroxypyrazine compared to isopropyl hydroxypyrazine, whereas the converse is true for VvOMT2. The timing of the expression of VvOMT1 in the skin and the flesh of developing Cabernet Sauvignon grape berries was associated with the period of MP accumulation in these tissues, while VvOMT2 expression was greatest in roots, which were found to contain high levels of MPs. The MP composition of these tissues also reflects the relative levels of expression of these genes and their substrate preference. The identification of genes responsible for MP production in grapevine will help in understanding the effect of different viticultural and environmental factors on MP accumulation.
BMC Plant Biology | 2009
Vanessa Melino; Kathleen L. Soole; Christopher M. Ford
BackgroundFresh fruits are well accepted as a good source of the dietary antioxidant ascorbic acid (Asc, Vitamin C). However, fruits such as grapes do not accumulate exceptionally high quantities of Asc. Grapes, unlike most other cultivated fruits do however use Asc as a precursor for the synthesis of both oxalic (OA) and tartaric acids (TA). TA is a commercially important product in the wine industry and due to its acidifying effect on crushed juice it can influence the organoleptic properties of the wine. Despite the interest in Asc accumulation in fruits, little is known about the mechanisms whereby Asc concentration is regulated. The purpose of this study was to gain insights into Asc metabolism in wine grapes (Vitis vinifera c.v. Shiraz.) and thus ascertain whether the developmental demand for TA and OA synthesis influences Asc accumulation in the berry.ResultsWe provide evidence for developmentally differentiated up-regulation of Asc biosynthetic pathways and subsequent fluctuations in Asc, TA and OA accumulation. Rapid accumulation of Asc and a low Asc to dehydroascorbate (DHA) ratio in young berries was co-ordinated with up-regulation of three of the primary Asc biosynthetic (Smirnoff-Wheeler) pathway genes. Immature berries synthesised Asc in-situ from the primary pathway precursors D-mannose and L-galactose. Immature berries also accumulated TA in early berry development in co-ordination with up-regulation of a TA biosynthetic gene. In contrast, ripe berries have up-regulated expression of the alternative Asc biosynthetic pathway gene D-galacturonic acid reductase with only residual expression of Smirnoff-Wheeler Asc biosynthetic pathway genes and of the TA biosynthetic gene. The ripening phase was further associated with up-regulation of Asc recycling genes, a secondary phase of increased accumulation of Asc and an increase in the Asc to DHA ratio.ConclusionWe demonstrate strong developmental regulation of Asc biosynthetic, recycling and catabolic genes in grape berries. Integration of the transcript, radiotracer and metabolite data demonstrates that Asc and TA metabolism are developmentally regulated in grapevines; resulting in low accumulated levels of the biosynthetic intermediate Asc, and high accumulated levels of the metabolic end-product TA.
Journal of Experimental Botany | 2014
Crystal Sweetman; Victor O. Sadras; Robert D. Hancock; Kathleen L. Soole; Christopher M. Ford
Summary Experiments conducted under controlled conditions in vineyards and growth chambers demonstrated day- and night-specific responses of grape berry organic acid levels through altered TCA cycle and amino acid metabolism.
FEBS Letters | 1997
Adam M. Takos; Ian B. Dry; Kathleen L. Soole
Glycosyl‐phosphatidylinositol (GPI)‐anchored plasma membrane proteins have been found to be widespread in eukaryotes and protozoa but have not been reported in higher terrestrial plants. A sensitive biotin‐based assay has been used to detect the presence of GPI‐anchored proteins on the outer surface of cultured Nicotiana tabacum cells. Six proteins with molecular weights of 92, 84, 60.5, 54.5, 39.5 and 37 kDa were found to move from a Triton X‐114 detergent‐rich phase to an aqueous phase following incubation with phosphatidylinositol‐specific phospholipase C (PtdIns‐PLC). The behaviour of these proteins is consistent with the presence of a GPI‐anchor. Seven GPI‐anchored proteins were also detected on the surface of tobacco leaf protoplasts with molecular weights of 67.5, 62, 39, 33.5, 27, 23 and 15.6 kDa. These data demonstrate the presence of multiple GPI‐anchored proteins on the plasma membrane of higher plant cells.
Collaboration
Dive into the Kathleen L. Soole's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs