Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn D. Held is active.

Publication


Featured researches published by Kathryn D. Held.


Lancet Oncology | 2005

New insights on cell death from radiation exposure

Kevin Prise; Giuseppe Schettino; M. Folkard; Kathryn D. Held

Ionising radiation has been an important part of cancer treatment for almost a century, being used in external-beam radiotherapy, brachytherapy, and targeted radionuclide therapy. At the molecular and cellular level, cell killing has been attributed to deposition of energy from the radiation in the DNA within the nucleus, with production of DNA double-strand breaks playing a central part. However, this DNA-centric model has been questioned because cell-death pathways, in which direct relations between cell killing and DNA damage diverge, have been reported. These pathways include membrane-dependent signalling pathways and bystander responses (when cells respond not to direct radiation exposure but to the irradiation of their neighbouring cells). New insights into mechanisms of these responses coupled with technological advances in targeting of cells in experimental systems with microbeams have led to a reassessment of the model of how cells are killed by ionising radiation. This review provides an update on these mechanisms.


Oncogene | 2005

Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts

Hongying Yang; Nesrin Asaad; Kathryn D. Held

Although radiation-induced bystander effects have been demonstrated in a number of cell types, the studies have largely been performed using high linear energy transfer (LET) radiation, such as α-particles. The literature is contradictory on whether fibroblasts show bystander responses, especially after low LET radiation such as X- or γ-rays and whether the same signal transmission pathways are involved. Herein, a novel transwell insert culture dish method is used to show that X-irradiation induces medium-mediated bystander effects in AGO1522 normal human fibroblasts. The frequency of micronuclei formation in unirradiated bystander cells increases from a background of about 6.5% to about 9–13% at all doses from 0.1 to 10 Gy to the irradiated cells. Induction of p21Waf1 protein and foci of γ-H2AX in bystander cells is also independent of dose to the irradiated cells above 0.1 Gy. In addition, levels of reactive oxygen species (ROS) were increased persistently in directly irradiated cells up to 60 h after irradiation and in bystander cells for 30 h. Adding Cu–Zn superoxide dismutase (SOD) and catalase to the medium decreases the formation of micronuclei and induction of p21Waf1 and γ-H2AX foci in bystander cells, suggesting oxidative metabolism plays a role in the signaling pathways in bystander cells. The results of clonogenic assay of bystander cells showed that survival of bystander cells decreases from 0 to 0.5 Gy, and then is independent of the dose to irradiated cells from 0.5 to 10 Gy. Unlike the response with p21Waf1 expression, γ-H2AX foci and micronuclei, adding SOD and catalase has no effect on the survival of bystander cells. The data suggest that irradiated cells release toxic factors other than ROS into the medium.


Radiation Research | 2003

Low-Dose Studies of Bystander Cell Killing with Targeted Soft X Rays

Giuseppe Schettino; M. Folkard; Kevin Prise; Borivoj Vojnovic; Kathryn D. Held; B.D. Michael

Abstract Schettino, G., Folkard, M., Prise, K. M., Vojnovic, B., Held, K. D. and Michael, B. D. Low-Dose Studies of Bystander Cell Killing with Targeted Soft X Rays. Radiat. Res. 160, 505–511 (2003). The Gray Cancer Institute ultrasoft X-ray microprobe was used to quantify the bystander response of individual V79 cells exposed to a focused carbon K-shell (278 eV) X-ray beam. The ultrasoft X-ray microprobe is designed to precisely assess the biological response of individual cells irradiated in vitro with a very fine beam of low-energy photons. Characteristic CK X rays are generated by a focused beam of 10 keV electrons striking a graphite target. Circular diffraction gratings (i.e. zone plates) are then employed to focus the X-ray beam into a spot with a radius of 0.25 μm at the sample position. Using this microbeam technology, the correlation between the irradiated cells and their nonirradiated neighbors can be examined critically. The survival response of V79 cells irradiated with a CK X-ray beam was measured in the 0–2-Gy dose range. The response when all cells were irradiated was compared to that obtained when only a single cell was exposed. The cell survival data exhibit a linear-quadratic response when all cells were targeted (with evidence for hypersensitivity at low doses). When only a single cell was targeted within the population, 10% cell killing was measured. In contrast to the binary bystander behavior reported by many other investigations, the effect detected was initially dependent on dose (<200 mGy) and then reached a plateau (>200 mGy). In the low-dose region (<200 mGy), the response after irradiation of a single cell was not significantly different from that when all cells were exposed to radiation. Damaged cells were distributed uniformly over the area of the dish scanned (∼25 mm2). However, critical analysis of the distance of the damaged, unirradiated cells from other damaged cells revealed the presence of clusters of damaged cells produced under bystander conditions.


Radiation Research | 1997

Coumarin-3-Carboxylic Acid as a Detector for Hydroxyl Radicals Generated Chemically and by Gamma Radiation

Yefim Manevich; Kathryn D. Held; John E. Biaglow

Coumarin-3-carboxylic acid (3-CCA) was used as a detector for hydroxyl radicals (.OH) in aqueous solution. The .OH was generated by gamma irradiation or chemically by the Cu2+-mediated oxidation of ascorbic acid (ASC). The excitation and emission spectra of 3-CCA, hydroxylated either chemically or by gamma irradiation, were nearly identical to those of an authentic 7-hydroxycoumarin-3-carboxylic acid (7-OHCCA). The pH-titration curves for the fluorescence at 450 nm (excitation at 395 nm) of 3-CCA, hydroxylated either chemically or by gamma radiation, were also identical to those of authentic 7-OHCCA (pK = 7.4). Time-resolved measurements of the fluorescence decays of radiation- or chemically hydroxylated 3-CCA, as well as those of 7-OHCCA, indicate a monoexponential fit. The fluorescence lifetime for the product of 3-CCA hydroxylation was identical to that of 7-OHCCA (approximately 4 ns). These data, together with analysis of end products by high-performance liquid chromatography, show that the major fluorescent product formed by radiation-induced or chemical hydroxylation of 3-CCA is 7-OHCCA. Fluorescence detection of 3-CCA hydroxylation allows real-time measurement of the kinetics of .OH generation. The kinetics of 3-CCA hydroxylation by gamma radiation is linear, although the kinetics of 3-CCA hydroxylation by the Cu2+-ASC reaction shows a sigmoid shape. The initial (slow) step of 3-CCA hydroxylation is sensitive to Cu2+, but the steeper (fast) step is sensitive to ASC. Analysis of the kinetics of 3-CCA hydroxylation shows a diffusion-controlled reaction with a rate constant 5.0 +/- 1.0 x 10(9) M(-1) s(-1). The scavenging of .OH by 3-CCA was approximately 14% for chemical generation with Cu2+-ASC and approximately 50% for gamma-radiation-produced .OH. The yield of 7-OHCCA under the same radiation conditions was approximately 4.4% and increased linearly with radiation dose. The 3-CCA method of detection of .OH is quantitative, sensitive, specific and therefore accurate. It has an excellent potential for use in biological systems.


Radiation Research | 2007

The Time Dependence of Bystander Responses Induced by Iron-Ion Radiation in Normal Human Skin Fibroblasts

Hongying Yang; Vered Anzenberg; Kathryn D. Held

Abstract Yang, H., Anzenberg, V. and Held, K. D. The Time Dependence of Bystander Responses Induced by Iron-Ion Radiation in Normal Human Skin Fibroblasts. Radiat. Res. 168, 292–298 (2007). Although bystander effects have been shown for some high-LET radiations, few studies have been done on bystander effects induced by heavy-ion radiation. In this study, using a Transwell insert co-culture system, we have demonstrated that irradiation with 1 GeV/nucleon iron ions can induce medium-mediated bystander effects in normal AG01522 human fibroblasts. When irradiated and unirradiated bystander cells were combined in shared medium immediately after irradiation, a two- to threefold increase in the percentage of bystander cells with γ-H2AX foci occurred as early as 1 h after irradiation and lasted at least 24 h. There was a twofold increase in the formation of micronuclei in bystander cells when they were co-cultured with irradiated cells immediately or 1 or 3 h after irradiation, but there was no bystander effect when the cells were co-cultured 6 h or later after irradiation. In addition, bystander micronucleus formation was observed even when the bystander cells were co-cultured with irradiated cells for only 1 h. This indicates that the crucial signaling to bystander cells from irradiated cells occurs shortly after irradiation. Moreover, both γ-H2AX focus formation and micronucleus formation in bystander cells were inhibited by the ROS scavengers SOD or catalase or the NO scavenger PTIO. This suggests that ROS and NO play important roles in the initiation of bystander effects. The results with iron ions were similar to those with X rays, suggesting that the bystander responses in this system are independent of LET.


Radiation Research | 1994

Mechanisms for the Oxygen Radical-Mediated Toxicity of Various Thiol-Containing Compounds in Cultured Mammalian Cells

Kathryn D. Held; John E. Biaglow

When Chinese hamster V79 cells are exposed to various thiol compounds in phosphate-buffered saline (PBS), some compounds cause toxicity (loss of colony formation), although the dependence on drug concentration and the magnitude of the cell killing vary between the different thiols. For example: dithiothreitol (DTT) and WR-1065 cause a biphasic toxicity whereby cell killing occurs at about 0.2 to 1.0 mM thiol, but is not seen at higher or lower drug concentrations; N-acetylcysteine (NAC) is toxic only at concentrations > or = 2 mM and shows no biphasic pattern; and glutathione (GSH) and penicillamine are only minimally toxic at all concentrations. The effect of the addition of 1 microM Cu2+ to the thiol also depends on the particular thiol: e.g., Cu2+ increases cell killing in the biphasic pattern with WR-1065; it increases the toxicity of NAC only at high thiol concentrations; and it elicits a slight toxicity in the biphasic pattern by GSH and penicillamine. In all cases tested, if the thiol is toxic, the cell killing can be decreased or prevented by addition of catalase, consistent with the hypothesis that the toxicity is mediated through H2O2 produced during the thiol oxidation. However, when the oxidation rates of the various thiols in PBS without and with Cu2+ were measured, the data did not show a simple correlation between the toxicity of the various thiols and their oxidation rates. The rate of the reaction of the various thiols with H2O2 was also determined and showed a better, but still not good, correlation with toxicity. However, cell killing by the various thiols correlated better with the ratio between the half-lives for thiol oxidation and reaction of thiol with H2O2 than with either reaction rate alone. This suggests that the toxicity pattern and magnitude of cell killing in V79 cells by various thiols depend on the interplay between the rate of thiol oxidation and the rate of reaction between the thiol and the H2O2 produced in the thiol oxidation.


Radiation Research | 1996

Role of Fenton Chemistry in Thiol-Induced Toxicity and Apoptosis

Kathryn D. Held; F. C. Sylvester; Karen Hopcia; John E. Biaglow

Under certain conditions, many radioprotective thiols can be toxic, causing loss of colony-forming ability in cultured mammalian cells in a biphasic fashion whereby the thiols are not toxic at high or low concentrations of the drug, but cause decreased clonogenicity at intermediate (0.2-1.0 mM) drug levels. This symposium paper summarizes our studies using dithiothreitol (DTT) as a model thiol to demonstrate the role of Fenton chemistry in thiol toxicity. The toxicity of DTT in V79 cells has several characteristics: it is dependent on the medium used during exposure of cells to the drug; the toxicity is decreased or prevented by addition of catalase exogenously, but superoxide dismutase has no effect; the toxicity is increased by addition of copper, either free or derived from ceruloplasmin in serum; and the toxicity can be modified intracellularly by altering glucose availability or pentose cycle activity. Thus the data are consistent with a mechanism whereby DTT oxidation produces H2O2 in a reaction catalyzed by metals, predominantly copper, followed by reaction of H2O2 in a metal-catalyzed Fenton reaction to produce the ultimate toxic species, .OH. Studies comparing 12 thiols have shown that the magnitude of cell killing and pattern of dependence on thiol concentration vary among the different agents, with the toxicity depending on the interplay between the rates of two reactions: thiol oxidation and the reaction between the thiol and the H2O2 produced during the thiol oxidation. The addition of other metals, e.g. Zn2+, and metal chelators, e.g. EDTA, can also alter DTT toxicity by altering the rates of thiol oxidation or the Fenton reaction. Recent studies have shown that in certain cell lines thiols can also cause apoptosis in a biphasic pattern, with little apoptosis at low or high drug concentrations but greatly increased apoptosis levels at intermediate (approximately 3 mM) thiol concentrations. There appears to be a good correlation between those thiols that cause loss of clonogenicity and those that induce apoptosis, suggesting similar mechanisms may be involved in both end points. However, thiol-induced apoptosis is not prevented by addition of exogenous catalase. These observations are discussed in relation to the possible role of Fenton chemistry in induction of apoptosis by thiols.


International Journal of Radiation Biology | 1981

Effects of Oxygen and Sulphydryl-containing Compounds on Irradiated Transforming DNA: Part I. Actions of Dithiothreitol

Kathryn D. Held; Hilary A. Harrop; B.D. Michael

The actions and interactions of oxygen and the sulphydryl-containing compound dithiothreitol (DTT) upon the radiation sensitivity of the biological activity of purified Bacillus subtilis transforming DNA have been examined. It has previously been shown that the sensitivity of transforming DNA irradiated in dilute solution is less when irradiation is performed in 100 per cent O2 than when in 100 per cent N2, i.e. O2 protects transforming DNA with a dose-modifying factor of about 0.7. DTT protects transforming DNA in a manner that is dependent on DTT concentration and on gassing conditions. In O2 the DTT protection can largely be attributed to the scavenging of .OH radicals by the DTT, but in anoxia DTT exerts a further protective effect which results in an increasing oxygen enhancement ratio (o.e.r.) with increasing DDT concentration to a maximum o.e.r. of about 14 at 2-5 mM DTT. This additional protective effect of DTT is attributable to hydrogen atom donation from DTT to DNA radicals, thus chemically repairing the DNA. Oxygen appears to block this chemical repair reaction.


Free Radical Biology and Medicine | 1997

Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method.

John E. Biaglow; Yefim Manevich; Fatih M. Uckun; Kathryn D. Held

We have established controlled conditions for studying the reaction of chemically and radiolytically produced hydroxyl radical (.OH) with 2-deoxy-D-ribose (2-DR). Ascorbate (ASC) or dithiothreitol (DTT) and cuprous or cupric ions were used to generate the OH-radical. The OH-radical was detected using the classical method of measuring the amount of thiobarbituric acid reactive products (TBARP) formed by .OH-mediated 2-DR degradation, but using sensitive fluorescent detection of the TBARP production to quantify the OH-radical. All experiments were performed with adequate O(2) concentrations. The copper reaction with ASC consumes O(2) in a manner that is strongly dependent on copper concentration, and less dependent on ascorbate concentration. For an independent check of the Cu2+ catalyzed ASC oxidation kinetics, the decay of ASC absorbency at 265 nm, as well as the increase of H(2)O(2) absorbency at approximately 240 nm, were also monitored. These spectral changes agree well with the O(2) consumption data. TBARP production from 2-DR incubated with a Cu2+-ASC mixture or gamma-irradiated were also compared. gamma-Irradiation of 2-DR solutions shows a dose and 2-DR concentration dependent increase of TBARP generation. Other electron donors, such as DTT, are more complicated in their mechanism of OH-radical production. Incubation of 2-DR with Cu2+-DTT mixtures shows a delay (approximately 50 min) before OH-radical generation is detected. Our results suggest that the Cu2+-ASC reaction can be used to mimic the effects of ionizing radiation with respect to OH-radical generation. The good reproducibility and relative simplicity of the 2-DR method with fluorescence detection indicates its usefulness for the quantitation of the OH-radical generated radiolytically or chemically in carefully controlled model systems.


International Journal of Radiation Biology | 1984

Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. II. Glutathione, cysteine and cysteamine.

Kathryn D. Held; Hilary A. Harrop; B.D. Michael

This paper extends our earlier observations on the effects of the sulphydryl (SH)-containing compound dithiothreitol (DTT) on the radiation response of Bacillus subtilis transforming DNA to three other SH-containing compounds-cysteamine, cysteine and glutathione (GSH). In general, all four compounds protect transforming DNA in a manner which is dependent on gassing conditions. In O2, the protection is consistent with the scavenging of OH radicals by the SH compounds, but in N2 there is additional protection which may be due to hydrogen atom donation from the SH compound to radiation-induced DNA lesions, a process which is blocked by O2. This additional protection in N2 results in an increase in the ratio of inactivation in the absence and presence of oxygen with increasing SH concentration to a maximum followed by a decrease at high SH concentrations. The maximum value of the ratio and the SH concentration at which it occurs depend on the SH compound. In particular, GSH appears to be significantly less efficient in the hydrogen-donation repair reaction with transforming DNA than are the other three SH compounds. Furthermore, on the basis of our results, we postulate the existence of a damage fixation process which occurs in the absence of O2, in competition with damage repair by SH compounds, and that this anoxic damage fixation occurs at a rate not less than 300 s-1. We also demonstrate here that the damage fixing reaction of O2 with transforming DNA radicals proceeds 200-fold faster than the competing repair reaction by hydrogen-donation from DTT.

Collaboration


Dive into the Kathryn D. Held's collaboration.

Top Co-Authors

Avatar

John E. Biaglow

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Prise

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward P. Clark

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge