Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathy R. Foltz is active.

Publication


Featured researches published by Kathy R. Foltz.


Journal of Biological Chemistry | 2002

Conserved Enzymatic Production and Biological Effect of O-Acetyl-ADP-ribose by Silent Information Regulator 2-like NAD+-dependent Deacetylases

Margie T. Borra; Forest J. O'Neill; Michael D. Jackson; Brett Marshall; Eric Verdin; Kathy R. Foltz; John M. Denu

Silent information regulator 2 (Sir2) family of enzymes has been implicated in many cellular processes that include histone deacetylation, gene silencing, chromosomal stability, and aging. Yeast Sir2 and several homologues have been shown to be NAD+-dependent histone/protein deacetylases. Previously, it was demonstrated that the yeast enzymes catalyze a unique reaction mechanism in which the cleavage of NAD+ and the deacetylation of substrate are coupled with the formation of O-acetyl-ADP-ribose, a novel metabolite. We demonstrate that the production of O-acetyl-ADP-ribose is evolutionarily conserved among Sir2-like enzymes from yeast,Drosophila, and human. Also, endogenous yeast Sir2 complex from telomeres was shown to generate O-acetyl-ADP-ribose. By using a quantitative microinjection assay to examine the possible biological function(s) of this newly discovered metabolite, we demonstrate that O-acetyl-ADP-ribose causes a delay/block in oocyte maturation and results in a delay/block in embryo cell division in blastomeres. This effect was mimicked by injection of low nanomolar levels of active enzyme but not with a catalytically impaired mutant, indicating that the enzymatic activity is essential for the observed effects. In cell-free oocyte extracts, we demonstrate the existence of cellular enzymes that can efficiently utilizeO-acetyl-ADP-ribose.


Methods in Cell Biology | 2004

Echinoderm eggs and embryos: Procurement and culture

Kathy R. Foltz; Nikki L. Adams; Linda L. Runft

The protocols outlined here hopefully will provide researchers with healthy, beautiful echinoderm oocytes, eggs, and embryos for experimental use. The large size of echinoderm oocytes and eggs, the ease with which they can be manipulated, and (in many species) their optical clarity, make them an ideal model system for studying not only the events specific to oocyte maturation and fertilization, but also for investigating more general questions regarding cell cycle regulation in an in vivo system. The quick rate at which development proceeds after fertilization to produce transparent embryos and larva makes the echinoderm an advantageous organism for studying deuterostome embryogenesis. Continued use of the echinoderms as model systems will undoubtedly uncover exciting answers to questions regarding fertilization, cell cycle regulation, morphogenesis, and how developmental events are controlled.


Developmental Biology | 2003

Function of a sea urchin egg Src family kinasein initiating Ca2+ release at fertilization

Andrew F. Giusti; Forest J O’Neill; Kyo Yamasu; Kathy R. Foltz; Laurinda A. Jaffe

Egg activation at fertilization requires the release of Ca(2+) from the eggs endoplasmic reticulum, and recent evidence has indicated that a Src family kinase (SFK) may function in initiating this signaling pathway in echinoderm eggs. Here, we identify and characterize a SFK from the sea urchin Strongylocentrotus purpuratus, SpSFK1. SpSFK1 RNA is present in eggs, and an antibody made against a SpSFK1 peptide recognizes an approximately 58-kDa egg membrane-associated protein in eggs of S. purpuratus as well as another sea urchin Lytechinus variegatus. Injection of both species of sea urchin eggs with dominant-interfering Src homology 2 domains of SpSFK1 delays and reduces the release of Ca(2+) at fertilization. Injection of an antibody against SpSFK1 into S. purpuratus eggs also causes a small increase in the delay between sperm-egg fusion and Ca(2+) release. In contrast, when injected into eggs of L. variegatus, this same antibody has a dramatic stimulatory effect: it causes PLCgamma-dependent Ca(2+) release like that occurring at fertilization. Correspondingly, in lysates of L. variegatus eggs, but not S. purpuratus eggs, the antibody stimulates SFK activity. Injection of L. variegatus eggs with another antibody that recognizes the L. variegatus egg SFK also causes PLCgamma-dependent Ca(2+) release like that at fertilization. These results indicate that activation of a Src family kinase present in sea urchin eggs is necessary to cause Ca(2+) release at fertilization and is capable of stimulating Ca(2+) release in the unfertilized egg via PLCgamma, as at fertilization.


Journal of Experimental Marine Biology and Ecology | 2000

Genetic structure of populations of the red sea urchin, Strongylocentrotus franciscanus

Patty Debenham; Mark A. Brzezinski; Kathy R. Foltz; Steven D. Gaines

Population subdivision was evaluated in the red sea urchin, Strongylocentrotus franciscanus, using DNA sequence data from 134 adult individuals collected in 1995 and 1996. On average 22 individuals were sequenced from six geographic locations between Alaska and Baja California (N=134), nearly the full extent of the species range. DNA sequence data was obtained from direct sequencing of a 273 base pair region of the bindin gene, which encodes a sperm fertilization protein. Results indicate that bindin is sufficiently polymorphic to serve as a genetic marker. We identified 14 unique alleles present in the entire range sampled with a maximum of eight alleles at a specific site. Mean pairwise comparison of the 14 unique alleles indicates moderate sequence diversity (p-distance=1.06). Although there is conflicting evidence to suggest that Alaska populations may deviate from the Hardy-Weinberg expectations, analysis of bindin genotype frequencies indicate that it is not possible to reject the null hypothesis of random mating throughout the species range. The results of a chi-square test with pooling conform to Hardy-Weinberg expectations for all populations (P>0.05) except for the Alaska population (P=0.037). Inbreeding coefficients are consistent with this result and suggest that for the bindin locus, there is high gene flow. These results are compared with previously published results of genetic substructuring in sea urchins to examine relationships among population structure, dispersal potential and biogeography.


Journal of Cell Science | 2004

Distinct roles for multiple Src family kinases at fertilization

Forest J. O'Neill; Jessica Gillett; Kathy R. Foltz

Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made against the unique domains of each AmSFK protein revealed that all three are expressed in eggs and localized primarily to the membrane fraction. Both AmSFK1 and AmSFK3 (but not AmSFK2) are necessary for egg activation, as determined by injection of starfish oocytes with dominant-interfering Src homology 2 (SH2) domains, which specifically delay and reduce the initial release of Ca2+ at fertilization. AmSFK3 exhibits a very rapid and transient kinase activity in response to fertilization, peaking at 30 seconds post sperm addition. AmSFK1 kinase activity also increases transiently at fertilization, but peaks later, at 2 minutes. These results indicate that there are multiple SFKs present in starfish eggs with distinct, perhaps sequential, signaling roles.


Journal of Molecular Evolution | 2000

Evaluation of sequence variation and selection in the bindin locus of the red sea urchin, Strongylocentrotus franciscanus.

Patty Debenham; Mark A. Brzezinski; Kathy R. Foltz

Abstract. Recent evidence suggests that gamete recognition proteins may be subjected to directed evolutionary pressure that enhances sequence variability. We evaluated whether diversity enhancing selection is operating on a marine invertebrate fertilization protein by examining the intraspecific DNA sequence variation of a 273-base pair region located at the 5′ end of the sperm bindin locus in 134 adult red sea urchins (Strongylocentrotus franciscanus). Bindin is a sperm recognition protein that mediates species-specific gamete interactions in sea urchins. The region of the bindin locus examined was found to be polymorphic with 14 alleles. Mean pairwise comparison of the 14 alleles indicates moderate sequence diversity (p-distance = 1.06). No evidence of diversity enhancing selection was found. It was not possible to reject the null hypothesis that the sequence variation observed in S. franciscanus bindin is a result of neutral evolution. Statistical evaluation of expected proportions of replacement and silent nucleotide substitutions, observed versus expected proportions of radical replacement substitutions, and conformance to the McDonald and Kreitman test of neutral evolution all indicate that random mutation followed by genetic drift created the polymorphisms observed in bindin. Observed frequencies were also highly similar to results expected for a neutrally evolving locus, suggesting that the polymorphism observed in the 5′ region of S. franciscanus bindin is a result of neutral evolution.


Proteomics | 2015

Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation.

Hongbo Guo; Ana E. Garcia-Vedrenne; Ruth Isserlin; Andrew Lugowski; Anthony Morada; Alex Sun; Yishen Miao; Uros Kuzmanov; Cuihong Wan; Hongyue Ma; Kathy R. Foltz; Andrew Emili

Fertilization triggers a dynamic symphony of molecular transformations induced by a rapid rise in intracellular calcium. Most prominent are surface alterations, metabolic activation, cytoskeletal reorganization, and cell‐cycle reentry. While the activation process appears to be broadly evolutionarily conserved, and protein phosphorylation is known to play a key role, the signaling networks mediating the response to fertilization are not well described. To address this gap, we performed a time course phosphoproteomic analysis of egg activation in the sea urchin Strongylocentrotus purpuratus, a system that offers biochemical tractability coupled with exquisite synchronicity. By coupling large‐scale phosphopeptide enrichment with unbiased quantitative MS, we identified striking changes in global phosphoprotein patterns at 2‐ and 5‐min postfertilization as compared to unfertilized eggs. Overall, we mapped 8796 distinct phosphosite modifications on 2833 phosphoproteins, of which 15% were differentially regulated in early egg activation. Activated kinases were identified by phosphosite mapping, while enrichment analyses revealed conserved signaling cascades not previously associated with egg activation. This work represents the most comprehensive study of signaling associated with egg activation to date, suggesting novel mechanisms that can be experimentally tested and providing a valuable resource for the broader research community. All MS data have been deposited in the ProteomeXchange with identifier PXD002239 (http://proteomecentral.proteomexchange.org/dataset/PXD002239).


Development Growth & Differentiation | 2003

Inhibition of mitogen activated protein kinase signaling affects gastrulation and spiculogenesis in the sea urchin embryo

Maya Kumano; Kathy R. Foltz

The mitogen activated protein (MAP) kinase signaling cascade has been implicated in a wide variety of events during early embryonic development. We investigated the profile of MAP kinase activity during early development in the sea urchin, Strongylocentrotus purpuratus, and tested if disruption of the MAP kinase signaling cascade has any effect on developmental events. MAP kinase undergoes a rapid, transient activation at the early blastula stage. After returning to basal levels, the activity again peaks at early gastrula stage and remains high through the pluteus stage. Immunostaining of early blastula stage embryos using antibodies revealed that a small subset of cells forming a ring at the vegetal plate exhibited active MAP kinase. In gastrula stage embryos, no specific subset of cells expressed enhanced levels of active enzyme. If the signaling cascade was inhibited at any time between the one cell and early blastula stage, gastrulation was delayed, and a significant percentage of embryos underwent exogastrulation. In embryos treated with MAP kinase signaling inhibitors after the blastula stage, gastrulation was normal but spiculogenesis was affected. The data suggest that MAP kinase signaling plays a role in gastrulation and spiculogenesis in sea urchin embryos.


Integrative and Comparative Biology | 2012

Proteomic responses of sea urchin embryos to stressful ultraviolet radiation.

Nikki L. Adams; J. P. Campanale; Kathy R. Foltz

Solar ultraviolet radiation (UVR, 290-400 nm) penetrates into seawater and can harm shallow-dwelling and planktonic marine organisms. Studies dating back to the 1930s revealed that echinoids, especially sea urchin embryos, are powerful models for deciphering the effects of UVR on embryonic development and how embryos defend themselves against UV-induced damage. In addition to providing a large number of synchronously developing embryos amenable to cellular, biochemical, molecular, and single-cell analyses, the purple sea urchin, Strongylocentrotus purpuratus, also offers an annotated genome. Together, these aspects allow for the in-depth study of molecular and biochemical signatures of UVR stress. Here, we review the effects of UVR on embryonic development, focusing on the early-cleavage stages, and begin to integrate data regarding single-protein responses with comprehensive proteomic assessments. Proteomic studies reveal changes in levels of post-translational modifications to proteins that respond to UVR, and identify proteins that can then be interrogated as putative targets or components of stress-response pathways. These responsive proteins are distributed among systems upon which targeted studies can now begin to be mapped. Post-transcriptional and translational controls may provide early embryos with a rapid, fine-tuned response to stress during early stages, especially during pre-blastula stages that rely primarily on maternally derived defenses rather than on responses through zygotic gene transcription.


Methods of Molecular Biology | 2014

Isolation and assessment of signaling proteins from synchronized cultures during egg activation and through the egg-to-embryo transition in sea urchins.

Michelle M. Roux-Osovitz; Kathy R. Foltz

Sea urchins are an excellent model system for investigating fertilization mechanisms and fundamental cell biological phenomenon such as release from quiescence, cell division, secretion, and basic signal transduction. The ease of gamete collection, fertilization, and culture is complemented by exquisite developmental synchronicity and the ability to carry out both large-scale biochemical studies and single-cell experiments. In particular, fertilization in echinoderms serves as a paradigm for a digital signaling event-a one-time only switch that launches the egg into the developmental pathway. Sperm-induced egg activation is dependent on the release of calcium from internal stores and subsequent effects on a myriad of cellular events such as exocytosis, cytoskeletal remodeling, and cell cycle reentry. Here we describe methods to investigate individual signaling proteins as well as global proteomic and phosphoproteomic changes involved in the initial steps of egg activation through the egg-to-embryo transition.

Collaboration


Dive into the Kathy R. Foltz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Carroll

Florida Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ian K. Townley

University of California

View shared research outputs
Top Co-Authors

Avatar

Laurinda A. Jaffe

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arcady Mushegian

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manisha Goel

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Maya Kumano

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge