Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katja Herzog is active.

Publication


Featured researches published by Katja Herzog.


Sensors | 2015

An automated field phenotyping pipeline for application in grapevine research.

Anna Kicherer; Katja Herzog; Michael Pflanz; Markus Wieland; Philipp Rüger; Steffen Kecke; Heiner Kuhlmann; Reinhard Töpfer

Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale.


BMC Bioinformatics | 2015

Field phenotyping of grapevine growth using dense stereo reconstruction.

Maria Klodt; Katja Herzog; Reinhard Töpfer; Daniel Cremers

BackgroundThe demand for high-throughput and objective phenotyping in plant research has been increasing during the last years due to large experimental sites. Sensor-based, non-invasive and automated processes are needed to overcome the phenotypic bottleneck, which limits data volumes on account of manual evaluations. A major challenge for sensor-based phenotyping in vineyards is the distinction between the grapevine in the foreground and the field in the background – this is especially the case for red-green-blue (RGB) images, where similar color distributions occur both in the foreground plant and in the field and background plants. However, RGB cameras are a suitable tool in the field because they provide high-resolution data at fast acquisition rates with robustness to outdoor illumination.ResultsThis study presents a method to segment the phenotypic classes ‘leaf’, ‘stem’, ‘grape’ and ‘background’ in RGB images that were taken with a standard consumer camera in vineyards. Background subtraction is achieved by taking two images of each plant for depth reconstruction. The color information is furthermore used to distinguish the leaves from stem and grapes in the foreground. The presented approach allows for objective computation of phenotypic traits like 3D leaf surface areas and fruit-to-leaf ratios. The method has been successfully applied to objective assessment of growth habits of new breeding lines. To this end, leaf areas of two breeding lines were monitored and compared with traditional cultivars. A statistical analysis of the method shows a significant (p <0.001) determination coefficient R 2= 0.93 and root-mean-square error of 3.0%.ConclusionsThe presented approach allows for non-invasive, fast and objective assessment of plant growth. The main contributions of this study are 1) the robust segmentation of RGB images taken from a standard consumer camera directly in the field, 2) in particular, the robust background subtraction via reconstruction of dense depth maps, and 3) phenotypic applications to monitoring of plant growth and computation of fruit-to-leaf ratios in 3D. This advance provides a promising tool for high-throughput, automated image acquisition, e.g., for field robots.


Gene | 2012

Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).

Katja Herzog; Henryk Flachowsky; Holger B. Deising; Magda-Viola Hanke

Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene.


Sensors | 2015

Impedance of the Grape Berry Cuticle as a Novel Phenotypic Trait to Estimate Resistance to Botrytis Cinerea

Katja Herzog; Rolf Wind; Reinhard Töpfer

Warm and moist weather conditions during berry ripening provoke Botrytis cinerea (B. cinerea) causing notable bunch rot on susceptible grapevines with the effect of reduced yield and wine quality. Resistance donors of genetic loci to increase B. cinerea resistance are widely unknown. Promising traits of resistance are represented by physical features like the thickness and permeability of the grape berry cuticle. Sensor-based phenotyping methods or genetic markers are rare for such traits. In the present study, the simple-to-handle I-sensor was developed. The sensor enables the fast and reliable measurement of electrical impedance of the grape berry cuticles and its epicuticular waxes (CW). Statistical experiments revealed highly significant correlations between relative impedance of CW and the resistance of grapevines to B. cinerea. Thus, the relative impedance Zrel of CW was identified as the most important phenotypic factor with regard to the prediction of grapevine resistance to B. cinerea. An ordinal logistic regression analysis revealed a R2McFadden of 0.37 and confirmed the application of Zrel of CW for the prediction of bunch infection and in this way as novel phenotyping trait. Applying the I-sensor, a preliminary QTL region was identified indicating that the novel phenotypic trait is as well a valuable tool for genetic analyses.


Sensors | 2018

High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation

Florian Rist; Katja Herzog; Jenny Mack; Robert Richter; Volker Steinhage; Reinhard Töpfer

Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg) was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r2 = 0.95 for berry number) compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.


Sensors | 2017

Phenoliner: A New Field Phenotyping Platform for Grapevine Research

Anna Kicherer; Katja Herzog; Nele Bendel; Hans-Christian Klück; Andreas Backhaus; Markus Wieland; Johann Christian Rose; Lasse Klingbeil; Thomas Läbe; Christian Hohl; Willi Petry; Heiner Kuhlmann; Udo Seiffert; Reinhard Töpfer

In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data.


Australian Journal of Grape and Wine Research | 2017

Automatic image-based determination of pruning mass as a determinant for yield potential in grapevine management and breeding

Anna Kicherer; Maria Klodt; S. Sharifzadeh; Daniel Cremers; Reinhard Töpfer; Katja Herzog

Background and Aims Vine balance is defined as a relation between vegetative (mass of dormant pruning wood) and generative (yield) growth. For grapevine breeding, emphasis is usually placed on the evaluation of individual seedlings. In this study, we calculated the mass of dormant pruning wood with the assistance of an automated image-based method for estimating the pixel area of dormant pruning wood. The evaluation of digital images in combination with depth map calculation and image segmentation is a new and non-invasive tool for objective data acquisition. Methods and Results The proposed method was tested on a set of seedlings planted at the Institute for Grapevine Breeding Geilweilerhof, Germany. All images taken in the field were geo-referenced, and the automated method was validated by manual segmentation. Together with additional yield parameters, the vine balance indices can be used to classify seedlings for breeding purposes. Conclusion The computed pruning mass obtained using image-based methods is an accurate, inexpensive and easy method to estimate pruning mass compared with the manual time-consuming measurements. Together with the yield parameters, it is a suitable method for seedling evaluation and can also be used in precision viticulture. Significance of the Study This study demonstrates an image-based evaluation of the pruning mass to be a highly valuable tool for grapevine research and grapevine breeding. Moreover, the tool might be used by industry to monitor vine balance. The key findings reported have the potential to increase grapevine breeding efficiency by using an accurate and objective phenotyping method.


Computers and Electronics in Agriculture | 2018

Semantic labeling and reconstruction of grape bunches from 3D range data using a new RGB-D feature descriptor

Jennifer Mack; Frank Schindler; Florian Rist; Katja Herzog; Reinhard Töpfer; Volker Steinhage

Abstract In the context of grapevine breeding, high precision and automated phenotyping plays an important role in order to screen breeding material (e.g. seedlings) or to characterize genetic repositories with high-throughput. Grape bunches hereby reveal a large variability regarding size, shape, compactness and color. We design and evaluate a new RGB-D descriptor for the semantic labeling of grape bunches. For this, we examine RGB and HSI color spaces and combine them with Fast-Point-Feature Histograms. With the best combination of FPFHs and the hue channel we achieve an average F-value of 88.61 %, outperforming classical descriptors like PFHRGB and SHOTColor by at least 8 %. Additionally, we show a new method for the derivation of parametric reconstructions of the elliptical berries based on a least squares fitting, yielding Pearson correlation coefficients of 0.8 and 0.9 for the main diameters of the berries.


9th Young Scientists Meeting 2016, 9th – 11th November in Quedlinburg - Abstracts - | 2016

Variety-depending susceptibility of cherries to Drosophila suzukii according to fruit firmness and other ripening parameters

Sebastian Hemer; Felix Briem; Andrea Hecht; Katja Herzog; Astrid Eben; Heidrun Vogt

Ryegrass (Lolium spec.) is the most important cool-season forage crop in temperate regions. Though, the seed production is considerably affected by several fungal and bacterial obligate biotrophic pathogens. The overall purpose of this study is directed to developing ryegrass cultivars with multiple pathogen resistance and agronomic adaption to Germany’s agricultural conditions. This aim shall be achieved by combining genes for resistances to stem rust, crown rust and bacterial wilt. The pyramidisation shall be accomplished by the use of specific molecular markers which will be derived by bulked segregant analysis combined with next generation sequencing based massive analysis of cDNA ends (MACE) transcriptome profiling. RNA was isolated from bulks of infected and noninfected leaf segments from susceptible and resistant genotypes of various fullsibling mapping populations (n ≥ 200) and their respective parental lines for every investigated pathogen. After MACE was performed, bioinformatic analysis detects SNPs and transcripts that were exclusively expressed in the resistant bulk. Thus, 30 molecular markers were genetically mapped to a 50.8 cM spanning region surrounding the stem rust resistance locus LpPg1. The development of this high efficient molecular selection tool marks MACE as a fast and reliable method that detects polymorphisms for genetic mapping of candidate genes and obtains to be the method of choice for investigating the molecular and genetic base of resistances to stem rust, crown rust and bacterial wilt.The current production systems in arable farming have reached their limits. Sizes of machinery are continuously increasing. Compaction and limits on the road are the consequences. Productionrelated restrictions like nitrogen pressure and development of resistances against plant protection products are further problems. Last but not least, the sociopolitical acceptance of crop production is questioned in public opinion. Due to these circumstances the question arises if the system of crop farming which has been adapted to the machinery available on the market is the right strategy for the future. Why not going the other way round and decide what a plant production system has to look like to be at an optimum and then decide what kind of machinery is needed to cultivate? Following this idea the plants must be in the focus.


Achtes Nachwuchswissenschaftlerforum 2015 : 19.-21. Oktober in Quedlinburg ; Abstracts | 2015

NoViSys: Novel Viticulture Systems for sustainable production and products

Anna Kicherer; Florian Schwander; Katja Herzog; Reinhard Töpfer; Bernd Weisshaar

The project is dealing with the improvement of a universal pneumatic seeder which is suitable for sowing a wide range of different seeds in order to decrease particulate emissions of seed dressings. Aim of the project is to identify leakages in the pneumatic system in order to develop opportunities for the subsequent improvement of existing equipment to fulfill the high demands of user and environmental protection. Pneumatic seeders are characterized by a central, funnelshaped hopper. The batch feeder being an airlock and dosing feeder is located in the outlet of the seeder. The metered seed is fed into the air stream and transported to the sowing distributor by a conveying air stream.Due to climatic change, phenology traits are becoming increasingly important in grapevine breeding, since a premature flowering and ripening time could be observed for grapevine in the last decades. However, knowledge about these traits is still limited as they are genetically very complex and highly influenced by environmental factors. The analysis of the genetic basis of flowering time therefore will enable the development of tightly linked molecular markers useful for markerassisted selection of especially late flowering breeding lines.One recently occurred invasive insect pest has caught the attention for investigating biological control mechanisms and systems: The spotted wing drosophila (SWD, Drosophila suzukii Matsumura) is endemic in East China and Japan but has been introduced to the western hemisphere about 10 years ago and has been found in Europe since 2009. Nowadays, it has emerged to one of the most harmful pests to commercially grown fruit plants like stone fruits and nearly all kind of berries while it prefers ripe and overripe fruits. Our intention is to investigate the possible usage of natural antagonists for biological control. Therefore, we examine the natural load of parasites and pathogens (i.e. fungi, bacteria, viruses, microsporidia and protista) in fruit flies, isolate them and re-infect lab populations of D. suzukii for investigating the antagonistic potential. Furthermore, we will integrate the fruit pest codling moth (Cydia pomonella), which is an ongoing problem in apple orchards also because the pest develops resistance against commercially available insecticides. The long-term aim is to establish a stable system for pathogen detection that can be used for rapid identification of microbial antagonists in natural populations.Two main problems have to be considered in the development of control agents against the Fire Blight pathogen Erwinia amylovora: First, the ability of exponential growth leads to high cell densities in a short amount of time. Second, the most critical phase of Fire Blight infection occurs during blossoming, when the pathogen is transported to open flowers by various insects. To prevent infection, it is important to avoid invasion inside the plants tissue by interfering with growth of E. amylovora cells.The entomopathogenic fungus Isaria fumosorosea, formerly known as Paecilomyces fumosoroseus, has got a relatively wide host range. Within the scope of the EU project BIOCOMES investigations were done to validate the use of I. fumosorosea as a BCA against several pest insects. Under laboratory conditions it could be shown that I. fumosorosea seems to be a suitable BCA against Bemisia tabaci (silverleaf whitefly) and Spodoptera exigua (beet armyworm).Since the last two decades a number of fingerprinting methods have been developed to analyze microbial communities and their dynamics, including Terminal Restriction Fragment Length Polymorphism (T-RFLP), Length Heterogeneity-Polymerase Chain Reaction (LHPCR) and Automated Ribosomal Intergenic Spacer Analysis (ARISA). Because the latter provides a quick and cheap way together with high accuracy, we have chosen this method to investigate the fungal communities on grapevine, wood, leaves and berries.Saoussen Ben Tiba, Andreas Larem, Eva Fritsch, Karin Undorf-Spahn, Asma Laarif, Sami Fattouch, Johannes A. Jehle 1 Julius Kuhn-Institut, Institute for Biological Control, Darmstadt, Germany 2 Regional Center for Agriculture and Biological Agriculture, Chott Meriem, Tunisia 3 National Institute for applied technological Science Tunis (INSAT), Carthage University, Tunisia Email of corresponding author: [email protected] promising approach to a more environmentally friendly viticulture is growing fungus resistant cultivars with the novel cultivation method of the minimal pruning of trellis trained grapevines (MPTS). This practice reduces the tremendous amounts of fungicides needed to protect traditional cultivars and is expected to increase biodiversity compared to vineyards with traditional trellis trained grapevines (TS).Meiosis as the specialized cell division of sexual reproduction plays a crucial role in the exchange and reorganization of genetic material between two individuals by dividing the chromosome set in half and forming gametes. Even though in the last years major findings in the field of meiosis have been achieved, especially in plants, some key questions remain concealed. For a proper meiosis the initiation of double strand breaks (DSBs) during early prophase I is essential. Without DSBs no physical connection can occur between homologous chromosomes and recombination, pairing, and crossing over are excluded. So far in all analyzed eukaryotes SPO11, a meiosis specific transesterase, is the key enzyme inducing DSBs. But other than in animals and fungi where a single SPO11 is sufficient, plants need at least two different SPO11, referred to as SPO11-1 and SPO11-2, for proper meiosis. In Arabidopsis thaliana both have crucial functions and are essential in a functional form for the induction of meiotic DSBs as single knock out mutants are leading to near sterility by random chromosome distribution. Despite the same function of the homologs SPO111 and -2, the identity between both proteins is quite low. Homology of the orthologous SPO11 from different organisms is much higher. By exchanging SPO11-1 and -2 in Arabidopsis by their orthologs from various organisms we could demonstrate a species specific function of each SPO11, as a functional complementation of sterility could only be achieved with SPO11 from closely related species from the Brassicaceae. By exchanging non conserved regions between SPO11-1 and -2 of Arabidopsis we additionally could show a sequence specific function for each SPO11, as a functional rescue could not be achieved with all chosen regions. Interestingly, we could reveal a specific pattern of aberrant spliced isoforms for each SPO11 which are also sequence as well as species specific. By producing antibodies against AthSPO11-1 and -2 we were able to analyze for the first time the binding of SPO11-2 onto the DNA and perform co-immunolocalization studies with SPO11-1 and -2.European Stone Fruit Yellows (ESFY) is one of the most serious diseases in European fruit production. Infected Prunus cultivars yield poorly and lead to high economic losses. ESFY is caused by a specialized bacterium located in the phloem tissue of Prunus ssp., the Phytoplasma ‘Candidatus Phytoplasma prunorum’. It is spread by the phloemfeeding plum psyllid (Cacopsylla pruni) which acquires the bacterium by feeding on infected plants and is able to transmit it to healthy plants.Leaf rust caused by Puccinia triticina can cause yield losses up to 60 % and is the most common rust disease of wheat in the world. Vertical leaf rust resistance genes (Lr-genes) have been introduced in cultivars. Many of these resistances are broken down by virulent pathotypes. Horizontal resistances which are independent from races of a pathogen are known but show a quantitative characteristic which is carried by a few cultivars.

Collaboration


Dive into the Katja Herzog's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge