Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrina A. Walsh is active.

Publication


Featured researches published by Katrina A. Walsh.


Journal of Virology | 2005

Rapid Viral Escape at an Immunodominant Simian-Human Immunodeficiency Virus Cytotoxic T-Lymphocyte Epitope Exacts a Dramatic Fitness Cost

Caroline S. Fernandez; Ivan Stratov; Robert De Rose; Katrina A. Walsh; C. Jane Dale; Miranda Z. Smith; Michael B. Agy; Shiu-Lok Hu; Kendall Krebs; David I. Watkins; David H. O'Connor; Miles P. Davenport; Stephen J. Kent

ABSTRACT Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus. We estimated both the strength of immune selection and the fitness cost of escape variants by studying the rates of T-cell escape and reversion in pigtail macaques. Near-complete replacement of wild-type with T-cell escape viral variants at an immunodominant simian immunodeficiency virus Gag epitope KP9 occurred rapidly (over 7 days) following infection of pigtail macaques with SHIVSF162P3. Another challenge virus, SHIVmn229, previously serially passaged through pigtail macaques, contained a KP9 escape mutation in 40/44 clones sequenced from the challenge stock. When six KP9-responding animals were infected with this virus, the escape mutation was maintained. By contrast, in animals not responding to KP9, rapid reversion of the K165R mutation occurred over 2 weeks after infection. The rapidity of reversion to the wild-type sequence suggests a significant fitness cost of the T-cell escape mutant. Quantifying both the selection pressure exerted by CTL and the fitness costs of escape mutation has important implications for the development of CTL-based vaccine strategies.


Journal of Oral and Maxillofacial Surgery | 2013

Oral health risk factors for bisphosphonate-associated jaw osteonecrosis.

Claudine Tsao; Ivan Darby; Peter R. Ebeling; Katrina A. Walsh; Neil M. O'Brien-Simpson; Eric C. Reynolds; Gelsomina L. Borromeo

PURPOSE To investigate the role of oral health, including periodontitis, as a risk factor for bisphosphonate-associated jaw osteonecrosis (ONJ). MATERIALS AND METHODS This cross-sectional study compared cases with an ONJ history to controls. All had a history of bisphosphonate treatment for malignancy. Participants underwent oral examination, gingival crevicular fluid (GCF) sampling, and phlebotomy. Serum was analyzed for biochemical parameters, bone markers, and immunoglobulin G titers against 4 periodontitis-associated bacteria. Cytokine levels were determined in GCF using a multiplex assay. RESULTS Caries development was comparable between groups. Periodontitis was significantly associated with ONJ using the US National Center for Health Statistics periodontitis definition (P = .002), at least 1 site with a probing depth of at least 4 mm (P = .003), and the percentage of sites per participant with a probing depth of 4 to 5 mm (P = .044). Immunoglobulin G titer against Porphyromonas gingivalis and GCF interleukin-1β level were also significantly associated with ONJ (P = .018 and P = .044, respectively). CONCLUSION In participants with a history of bisphosphonate treatment for malignancy, periodontitis was associated with ONJ when measured using clinical parameters, serum immunoglobulin G titers against P gingivalis, and GCF interleukin-1β levels, suggesting that periodontitis and associated bacteria are potentially important in ONJ pathophysiology.


Journal of Bacteriology | 2009

Response of Porphyromonas gingivalis to Heme Limitation in Continuous Culture

Stuart G. Dashper; Ching-Seng Ang; Paul D. Veith; Helen L. Mitchell; Alvin W. Lo; Christine A. Seers; Katrina A. Walsh; Nada Slakeski; Dina Chen; J. Patricia Lissel; Catherine A. Butler; Neil M. O'Brien-Simpson; Ian G. Barr; Eric C. Reynolds

Porphyromonas gingivalis is an anaerobic, asaccharolytic, gram-negative bacterium that has essential requirements for both iron and protoporphyrin IX, which it preferentially obtains as heme. A combination of large-scale quantitative proteomic analysis using stable isotope labeling strategies and mass spectrometry, together with transcriptomic analysis using custom-made DNA microarrays, was used to identify changes in P. gingivalis W50 protein and transcript abundances on changing from heme-excess to heme-limited continuous culture. This approach identified 160 genes and 70 proteins that were differentially regulated by heme availability, with broad agreement between the transcriptomic and proteomic data. A change in abundance of the enzymes of the aspartate and glutamate catabolic pathways was observed with heme limitation, which was reflected in organic acid end product levels of the culture fluid. These results demonstrate a shift from an energy-efficient anaerobic respiration to a less efficient process upon heme limitation. Heme limitation also resulted in an increase in abundance of a protein, PG1374, which we have demonstrated, by insertional inactivation, to have a role in epithelial cell invasion. The greater abundance of a number of transcripts/proteins linked to invasion of host cells, the oxidative stress response, iron/heme transport, and virulence of the bacterium indicates that there is a broad response of P. gingivalis to heme availability.


Brain Behavior and Immunity | 2013

Acute phase protein and cytokine levels in serum and saliva: A comparison of detectable levels and correlations in a depressed and healthy adolescent sample

Michelle L. Byrne; Neil M. O'Brien-Simpson; Eric C. Reynolds; Katrina A. Walsh; Katrina M. Laughton; Joanna M. Waloszek; Michael J. Woods; John Trinder; Nicholas B. Allen

Recent research has examined associations between inflammation and mental health, and has increasingly focused on utilising younger samples to characterise the temporal relationship between inflammatory responses and the emergence of other symptoms. These studies have typically used blood to measure inflammation, although rates of detection for many inflammatory markers appear to be low. Saliva is a safe and low-cost alternative, and adult research has shown that levels of some salivary markers correlate well with those in serum. However, no research has examined this association in young people. This study examined 16 inflammatory markers in serum and saliva in 17 depressed adolescents and 18 healthy controls, aged 13-18 years. In general, detection rates were higher in saliva compared to in serum. When non-detectable levels were excluded, serum levels of C-reactive protein (CRP) correlated with salivary CRP (r=0.424, p=0.015), and this correlation appeared to only exist for those individuals with high levels of serum CRP (r=0.599, p=0.014). However, when non-detectable levels were included as zero, salivary levels of CRP, interleukin (IL)-2, IL-12p70, and interferon (IFN)-γ correlated with their serum counterparts. No significant clinical group differences in any acute phase proteins or cytokines were present. This study suggests that saliva can be used to measure inflammation in studies with adolescent participants, especially CRP, as it appears to correlate with systemic inflammation for those individuals who are expected to have high levels of inflammation. Implications for future directions in research on salivary inflammatory markers are discussed.


Journal of Immunology | 2014

Macrophage Depletion Abates Porphyromonas gingivalis–Induced Alveolar Bone Resorption in Mice

Roselind S. Lam; Neil M. O’Brien-Simpson; Jason C. Lenzo; James A. Holden; Gail C. Brammar; Katrina A. Walsh; Judith McNaughtan; Dennis K. Rowler; Nico van Rooijen; Eric C. Reynolds

The role of the macrophage in the immunopathology of periodontitis has not been well defined. In this study, we show that intraoral inoculation of mice with Porphyromonas gingivalis resulted in infection, alveolar bone resorption, and a significant increase in F4/80+ macrophages in gingival and submandibular lymph node tissues. Macrophage depletion using clodronate-liposomes resulted in a significant reduction in F4/80+ macrophage infiltration of gingival and submandibular lymph node tissues and significantly (p < 0.01) less P. gingivalis–induced bone resorption compared with controls in BALB/c and C57BL/6 mice. In both mouse strains, the P. gingivalis–specific IgG Ab subclass and serum cytokine [IL-4, IL-10, IFN-γ, and IL-12 (p70)] responses were significantly (p < 0.01) lower in the macrophage-depleted groups. Macrophage depletion resulted in a significant reduction in the level of P. gingivalis infection, and the level of P. gingivalis infection was significantly correlated with the level of alveolar bone resorption. M1 macrophages (CD86+), rather than M2 macrophages (CD206+), were the dominant macrophage phenotype of the gingival infiltrate in response to P. gingivalis infection. P. gingivalis induced a significant (p < 0.01) increase in NO production and a small increase in urea concentration, as well as a significant increase in the secretion of IL-1β, IL-6, IL-10, IL-12 (p70), eotaxin, G-CSF, GM-CSF, macrophage chemoattractant protein-1, macrophage inflammatory protein-α and -β, and TNF-α in isolated murine macrophages. In conclusion, P. gingivalis infection induced infiltration of functional/inflammatory M1 macrophages into gingival tissue and alveolar bone resorption. Macrophage depletion reduced P. gingivalis infection and alveolar bone resorption by modulating the host immune response.


Biochimica et Biophysica Acta | 2009

Major proteins and antigens of Treponema denticola

Paul D. Veith; Stuart G. Dashper; Neil M. O'Brien-Simpson; Rita A. Paolini; Rebecca Orth; Katrina A. Walsh; Eric C. Reynolds

Treponema denticola is a Gram-negative, motile, asaccharolytic, anaerobic spirochaete which along with Porphyromonas gingivalis and Tannerella forsythia has been shown to form a bacterial consortium called the Red Complex that is strongly associated with the clinical progression of chronic periodontitis. T. denticola was grown in continuous culture in a complex medium with a mean generation time of 15.75 h. Samples from two different membrane-enriched preparations and a cytoplasm-enriched preparation were separated by two-dimensional gel electrophoresis and the proteins identified by MALDI-TOF/TOF mass spectrometry. In total, 219 non-redundant proteins were identified including numerous virulence factors, lipoproteins, ABC transporter proteins and enzymes involved in the metabolism of nine different amino acids of which glycine seems to be of particular importance. Novel findings include the identification of several abundant peptide uptake systems, and the identification of three flagellar filament outer layer proteins. Two-dimensional Western blot analysis using sera from mice immunized with formalin-killed T. denticola cells suggested that Msp, PrcA, OppA, OppA10, MglB, TmpC and several flagellar filament proteins are antigenic.


Journal of Microbiological Methods | 2010

An efficient method for enumerating oral spirochetes using flow cytometry

Rebecca Orth; Neil M. O'Brien-Simpson; Stuart G. Dashper; Katrina A. Walsh; Eric C. Reynolds

Spirochetes, such as Treponema denticola, are thin walled, helical, motile bacteria. They are notoriously difficult to enumerate due to their thinness and the difficulties associated with culturing them. Here we have developed a modified oral bacterial growth medium (OBGM) that significantly improves the cultivation of T. denticola compared with a previously published growth medium. Three methods for the enumeration of T. denticola, semi-solid growth medium colony-forming unit (CFU) counts, DNA analysis and flow cytometry, are described and compared. Enumeration of T. denticola using the semi-solid agar method resulted in a positive linear relationship with absorbance of the culture (R(2)=0.9423). However, the semi-solid agar method was found to consistently underestimate (by 50 fold) the T. denticola cell density compared to previously published data. DNA analysis of T. denticola cultures reliably and consistently resulted in a positive linear relationship with absorbance (R(2)=0.9360), giving a calculated cell density of 6.9 x 10(8)cells/mL at an absorbance of 0.2 at 650 nm. Flow cytometry was also found to result in a positive linear relationship with absorbance (R(2)=0.9874), giving a calculated cell density of 6.6 x 10(8)cells/mL at an absorbance of 0.2 at 650 nm. In comparing all of these enumeration methods, the flow cytometry method was found to have distinct advantages, as it is accurate, rapid, and could distinguish between live and dead bacteria. Thus flow cytometry is a recommended means for the rapid and reliable enumeration of viable spirochetes from culture.


Infection and Immunity | 2010

Protease-activated receptor-2 has pivotal roles in cellular mechanisms involved in experimental periodontitis.

David Wong; Vivian Tam; Roselind S. Lam; Katrina A. Walsh; Liliana Tatarczuch; Charles N. Pagel; Eric C. Reynolds; Neil M. O'Brien-Simpson; Eleanor J. Mackie; Robert N. Pike

ABSTRACT The tissue destruction seen in chronic periodontitis is commonly accepted to involve extensive upregulation of the host inflammatory response. Protease-activated receptor 2 (PAR-2)-null mice infected with Porphyromonas gingivalis did not display periodontal bone resorption in contrast to wild-type-infected and PAR-1-null-infected mice. Histological examination of tissues confirmed the lowered bone resorption in PAR-2-null mice and identified a substantial decrease in mast cells infiltrating the periodontal tissues of these mice. T cells from P. gingivalis-infected or immunized PAR-2-null mice proliferated less in response to antigen than those from wild-type animals. CD90 (Thy1.2) expression on CD4+ and CD8+ T-cell-receptor β (TCRβ) T cells was significantly (P < 0.001) decreased in antigen-immunized PAR-2-null mice compared to sham-immunized PAR-2-null mice; this was not observed in wild-type controls. T cells from infected or antigen-immunized PAR-2-null mice had a significantly different Th1/inflammatory cytokine profile from wild-type cells: in particular, gamma interferon, interleukins (interleukin-2, -3, and -17), granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha demonstrated lower expression than wild-type controls. The absence of PAR-2 therefore appears to substantially decrease T-cell activation and the Th1/inflammatory response. Regulation of such proinflammatory mechanisms in T cells and mast cells by PAR-2 suggests a pivotal role in the pathogenesis of the disease.


Journal of Bacteriology | 2010

FimR and FimS: Biofilm Formation and Gene Expression in Porphyromonas gingivalis

Alvin W. Lo; Christine A. Seers; Stuart G. Dashper; Catherine A. Butler; Glenn D. Walker; Katrina A. Walsh; Deanne V. Catmull; Brigitte Hoffmann; Steven M. Cleal; Patricia Lissel; John D. Boyce; Eric C. Reynolds

Porphyromonas gingivalis is a late-colonizing bacterium of the subgingival dental plaque biofilm associated with periodontitis. Two P. gingivalis genes, fimR and fimS, are predicted to encode a two-component signal transduction system comprising a response regulator (FimR) and a sensor histidine kinase (FimS). In this study, we show that fimS and fimR, although contiguous on the genome, are not part of an operon. We inactivated fimR and fimS in both the afimbriated strain W50 and the fimbriated strain ATCC 33277 and demonstrated that both mutants formed significantly less biofilm than their respective wild-type strains. Quantitative reverse transcription-real-time PCR showed that expression of fimbriation genes was reduced in both the fimS and fimR mutants of strain ATCC 33277. The mutations had no effect, in either strain, on the P. gingivalis growth rate or on the response to hydrogen peroxide or growth at pH 9, at 41 degrees C, or at low hemin availability. Transcriptome analysis using DNA microarrays revealed that inactivation of fimS resulted in the differential expression of 10% of the P. gingivalis genome (>1.5-fold; P < 0.05). Notably genes encoding seven different transcriptional regulators, including the fimR gene and three extracytoplasmic sigma factor genes, were differentially expressed in the fimS mutant.


PLOS ONE | 2016

A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity

Neil M. O’Brien-Simpson; Namfon Pantarat; Troy J. Attard; Katrina A. Walsh; Eric C. Reynolds

We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy.

Collaboration


Dive into the Katrina A. Walsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Orth

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge