Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul D. Veith is active.

Publication


Featured researches published by Paul D. Veith.


Current Protein & Peptide Science | 2003

Porphyromonas gingivalis Gingipains: The Molecular Teeth of a Microbial Vampire

Neil M. O'Brien-Simpson; Paul D. Veith; Stuart G. Dashper; Eric C. Reynolds

The gingipains are cell surface Arg- and Lys-specific proteinases of the bacterium Porphyromons gingivalis, which has been associated with periodontitis, a disease that results in the destruction of the teeth-s supporting tissues. The proteinases are encoded by three genes designated rgpA, rgpB and kgp. Arg-specific proteolytic activity is encoded by rgpA/B and the Lys-specific activity by kgp. RgpA and Kgp are polyproteins comprising proteinases with C-terminal adhesin domains that are proteolytically processed. After processing, the domains remain non-covalently associated as complexes on the cell surface. RgpB is also a cell surface proteinase but does not associate with adhesin domains. Using gene knockout P. gingivalis mutants, the proteolytic processing of the gingipain domains has been shown to involve the gingipains themselves as well as C-terminal processing by a carboxypeptidase. A motif in the C-terminal domain of each protein/polyprotein has been identified that is suggested to be involved in attachment to LPS on the cell surface. RgpB lacks a C-terminal adhesin binding motif found in the catalytic domains of RgpA and Kgp. This adhesin binding motif is proposed to be responsible for the non-covalent association of the RgpA and Kgp catalytic domains into the cell surface complexes with the processed adhesin domains. The RgpA-Kgp proteinase-adhesin complexes, through the adhesin domains A1 and A3, have been implicated in colonization of P. gingivalis by binding to other bacteria in subgingival plaque and also binding to crevicular epithelial cells. The RgpA-Kgp complexes also bind to fibrinogen, laminin, collagen type V, fibronectin and hemoglobin. Amino acid sequences likely to be involved in binding to these host proteins have been identified in adhesin domains A1 and A3. It is proposed that these adhesins target the proteolytic activity to host cell surface matrix proteins and receptors. The continual cycle of binding and degradation of the surface proteins/receptors on epithelial, fibroblast and endothelial cells by the RgpA-Kgp complexes in the gingival tissue leading to cell death would contribute to inflammation, tissue destruction and vascular disruption (bleeding). P. gingivalis has an obligate growth requirement for iron and protoporphyrin IX, which it preferentially utilizes in the form of hemoglobin. Kgp proteolytic activity is essential for rapid hydrolysis of hemoglobin and it is suggested therefore that a major role of the RgpA-Kgp complexes is in vascular disruption and the binding and rapid degradation of hemoglobin for heme assimilation by P. gingivalis. The RgpA-Kgp complexes also have a major role in the evasion and dysregulation of the host-s immune response. It is proposed that host pro-inflammatory cytokines and cellular receptors close to the infection site may be rapidly and efficiently degraded by the gingipains while the proteinases at lower concentrations distally could result in the promotion of an inflammatory response through activation of proteinase-activated receptors and cytokine release. The culmination of this dysregulation would be tissue destruction and bone resorption. In animal models of disease the RgpA-Kgp complex when used as a vaccine to produce a high titre antibody response protects against challenge with P. gingivalis. Using recombinant domains of RgpA and Kgp as vaccines, it has been demonstrated that the A1 and A3 domains confer protection.


Biochemical Journal | 2002

Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50

Paul D. Veith; Gert H. Talbo; Nada Slakeski; Stuart G. Dashper; Caroline Moore; Rita A. Paolini; Eric C. Reynolds

Porphyromonas gingivalis is an anaerobic, asaccharolytic Gram-negative rod associated with chronic periodontitis. We have undertaken a proteomic study of the outer membrane of P. gingivalis strain W50 using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteins were identified by reference to the pre-release genomic sequence of P. gingivalis available from The Institute for Genomic Research. Out of 39 proteins identified, five were TonB-linked outer membrane receptors, ten others were putative integral outer membrane proteins and four were putative lipoproteins. Pyroglutamate was found to be the N-terminal residue of seven of the proteins, and was predicted to be the N-terminal residue of 13 additional proteins. The RgpA, Kgp and HagA polyproteins were identified as fully processed domains in outer membranes prepared in the presence of proteinase inhibitors. Several domains were found to be C-terminally truncated 16-57 residues upstream from the N-terminus of the following domain, at a residue penultimate to a lysine. This pattern of C-terminal processing was not detected in a W50 strain isogenic mutant lacking the lysine-specific proteinase Kgp. Construction of another W50 isogenic mutant lacking the arginine-specific proteinases indicated that RgpB and/or RgpA were also involved in domain processing. The C-terminal adhesin of RgpA, designated RgpA27, together with RgpB and two newly identified proteins designated P27 and P59 were found to migrate on two-dimensional gels as vertical streaks at a molecular mass 13-42 kDa higher than that calculated from their gene sequences. The electrophoretic behaviour of these proteins, together with their immunoreactivity with a monoclonal antibody that recognizes lipopolysaccharide, is consistent with a modification that could anchor the proteins to the outer membrane.


Journal of Bacteriology | 2006

The RgpB C-Terminal Domain Has a Role in Attachment of RgpB to the Outer Membrane and Belongs to a Novel C-Terminal-Domain Family Found in Porphyromonas gingivalis

Christine A. Seers; Nada Slakeski; Paul D. Veith; Todd Nikolof; Yu-Yen Chen; Stuart G. Dashper; Eric C. Reynolds

Porphyromonas gingivalis produces outer membrane-attached proteins that include the virulence-associated proteinases RgpA and RgpB (Arg-gingipains) and Kgp (Lys-gingipain). We analyzed the P. gingivalis outer membrane proteome and identified numerous proteins with C-terminal domains similar in sequence to those of RgpB, RgpA, and Kgp, indicating that these domains may have a common function. Using RgpB as a model to investigate the role of the C-terminal domain, we expressed RgpB as a full-length zymogen (recombinant RgpB [rRgpB]), with a catalytic Cys244Ala mutation [rRgpB(C244A)], or with the C-terminal 72 amino acids deleted (rRgpB435) in an Arg-gingipain P. gingivalis mutant (YH522AB) and an Arg- and Lys-gingipain mutant (YH522KAB). rRgpB was catalytically active and located predominantly attached to the outer membrane of both background strains. rRgpB(C244A) was inactive and outer membrane attached, with a typical attachment profile for both background strains according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but in YH522KAB, the prodomain was not removed. Thus, in vivo, RgpB export and membrane attachment are independent of the proteolytic activity of RgpA, RgpB, or Kgp. However, for maturation involving proteolytic processing of RgpB, the proteolytic activity of RgpB, RgpA, or Kgp is required. The C-terminally-truncated rRgpB435 was not attached to the outer membrane and was located as largely inactive, discrete 71-kDa and 48-kDa isoforms in the culture supernatant and the periplasm. These results suggest that the C-terminal domain is essential for outer membrane attachment and may be involved in a coordinated process of export and attachment to the cell surface.


Journal of Immunology | 2005

An Immune Response Directed to Proteinase and Adhesin Functional Epitopes Protects against Porphyromonas gingivalis-Induced Periodontal Bone Loss

Neil M. O'Brien-Simpson; Rd Pathirana; Ra Paolini; Yu-Yen Chen; Paul D. Veith; Tam; Nafisa Ally; Robert N. Pike; Eric C. Reynolds

Porphyromonas gingivalis, a pathogen associated with periodontitis, bound to fibrinogen, fibronectin, hemoglobin, and collagen type V with a similar profile to that of its major virulence factor, the cell surface RgpA-Kgp proteinase-adhesin complex. Using peptide-specific, purified Abs in competitive inhibition ELISAs and epitope mapping assays, we have identified potential adhesin binding motifs (ABMs) of the RgpA-Kgp complex responsible for binding to host proteins. The RgpA-Kgp complex and synthetic ABM and proteinase active site peptides conjugated to diphtheria toxoid, when used as vaccines, protected against P. gingivalis-induced periodontal bone loss in the murine periodontitis model. The most efficacious peptide and protein vaccines were found to induce a high-titer IgG1 Ab response. Furthermore, mice protected in the lesion and periodontitis models had a predominant P. gingivalis-specific IL-4 response, whereas mice with disease had a predominant IFN-γ response. The peptide-specific Abs directed to the ABM2 sequence (EGLATATTFEEDGVA) protected against periodontal bone loss and inhibited binding of the RgpA-Kgp complex to fibrinogen, fibronectin, and collagen type V. Furthermore, the peptide-specific Abs directed to the ABM3 sequence (GTPNPNPNPNPNPNPGT) protected against periodontal bone loss and inhibited binding to hemoglobin. However, the most protective Abs were those directed to the active sites of the RgpA and Kgp proteinases. The results suggest that when the RgpA-Kgp complex, or functional binding motif or active site peptides are used as a vaccine, they induce a Th2 response that blocks function of the RgpA-Kgp complex and protects against periodontal bone loss.


Journal of Biological Chemistry | 2012

PG0026 Is the C-terminal Signal Peptidase of a Novel Secretion System of Porphyromonas gingivalis

Michelle D. Glew; Paul D. Veith; Benjamin Peng; Yu-Yen Chen; Dhana G. Gorasia; Qiaohui Yang; Nada Slakeski; Dina Chen; Caroline Moore; Simon Crawford; Eric C. Reynolds

Background: Several virulence factors of Porphyromonas gingivalis have a novel C-terminal signal that directs secretion across the outer membrane. Results: The predicted catalytic amino acid of PG0026 was essential for the removal of this signal. Conclusion: PG0026 is a novel C-terminal signal peptidase. Significance: We have identified a novel signal peptidase of a new type of secretion system. Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) of ∼70–80 amino acid residues that is essential for their secretion and attachment to the cell surface. The CTD itself has not been detected in mature substrates, suggesting that it may be removed by a novel signal peptidase. More than 10 proteins have been shown to be essential for the proper functioning of the secretion system, and one of these, PG0026, is a predicted cysteine proteinase that also contains a CTD, suggesting that it may be a secreted component of the secretion system and a candidate for being the CTD signal peptidase. A PG0026 deletion mutant was constructed along with a PG0026C690A targeted mutant encoding an altered catalytic Cys residue. Analysis of clarified culture fluid fractions by SDS-PAGE and mass spectrometry revealed that the CTD was released intact into the surrounding medium in the wild type strain, but not in the PG0026 mutant strains. Western blot experiments revealed that the maturation of a model substrate was stalled at the CTD-removal step specifically in the PG0026 mutants, and whole cell ELISA experiments demonstrated partial secretion of substrates to the cell surface. The CTD was also shown to be accessible at the cell surface in the PG0026 mutants, suggesting that the CTD was secreted but could not be cleaved. The data indicate that PG0026 is responsible for the cleavage of the CTD signal after substrates are secreted across the OM.


Journal of Biological Chemistry | 2005

A Novel Porphyromonas gingivalis FeoB Plays a Role in Manganese Accumulation

Stuart G. Dashper; Catherine A. Butler; J. Patricia Lissel; Rita A. Paolini; Brigitte Hoffmann; Paul D. Veith; Neil M. O'Brien-Simpson; Sarah L. Snelgrove; John T. Tsiros; Eric C. Reynolds

FeoB is an atypical transporter that has been shown to exclusively mediate ferrous ion transport in some bacteria. Unusually the genome of the periodontal pathogen Porphyromonas gingivalis has two genes (feoB1 and feoB2) encoding FeoB homologs, both of which are expressed in bicistronic operons. Kinetic analysis of ferrous ion transport by P. gingivalis W50 revealed the presence of a single, high affinity system with a Kt of 0.31 μm. FeoB1 was found to be solely responsible for this transport as energized cells of the isogenic FeoB1 mutant (W50FB1) did not transport radiolabeled iron, while the isogenic FeoB2 mutant (W50FB2) transported radiolabeled iron at a rate similar to wild type. This was reflected in the iron content of W50FB1 grown in iron excess conditions which was approximately half that of the wild type and W50FB2. The W50FB1 mutant had increased sensitivity to both oxygen and hydrogen peroxide and was avirulent in an animal model of infection whereas W50FB2 exhibited the same virulence as the wild type. Analysis of manganous ion uptake using inductively coupled plasma-mass spectrometry revealed a greater than 3-fold decrease in intracellular manganese accumulation in W50FB2 which was also unable to grow in manganese-limited media. The protein co-expressed with FeoB2 appears to be a novel FeoA-MntR fusion protein that exhibits homology to a manganese-responsive, DNA-binding metalloregulatory protein. These results indicate that FeoB2 is not involved in iron transport but plays a novel role in manganese transport.


Molecular Microbiology | 2011

The outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis

Yu-Yen Chen; Benjamin Peng; Qiaohui Yang; Michelle D. Glew; Paul D. Veith; Keith J. Cross; Kenneth N. Goldie; Dina Chen; Neil M. O'Brien-Simpson; Stuart G. Dashper; Eric C. Reynolds

Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C‐terminal domain (CTD) essential for secretion and attachment to the cell surface. Inactivation of lptO (PG0027) or porT produced mutants that lacked surface protease activity and an electron‐dense surface layer. Both mutants showed co‐accumulation of A‐LPS and unmodified CTD proteins in the periplasm. Lipid profiling by mass spectrometry showed the presence of both tetra‐ and penta‐acylated forms of mono‐phosphorylated lipid A in the wild‐type and porT mutant, while only the penta‐acylated forms of mono‐phosphorylated lipid A were found in the lptO mutant, indicating a specific role of LptO in the O‐deacylation of mono‐phosphorylated lipid A. Increased levels of non‐phosphorylated lipid A and the presence of novel phospholipids in the lptO mutant were also observed that may compensate for the missing mono‐phosphorylated tetra‐acylated lipid A in the outer membrane (OM). Molecular modelling predicted LptO to adopt a β‐barrel structure characteristic of an OM protein, supported by the enrichment of LptO in OM vesicles. The results suggest that LPS deacylation by LptO is linked to the co‐ordinated secretion of A‐LPS and CTD proteins by a novel secretion and attachment system to form a structured surface layer.


International Journal of Peptide Research and Therapeutics | 2007

A Review of the Salivary Proteome and Peptidome and Saliva-derived Peptide Therapeutics

N. Laila Huq; Keith J. Cross; Men Ung; Helen Myroforidis; Paul D. Veith; Dina Chen; David P. Stanton; Huiling He; Brent R. Ward; Eric C. Reynolds

Saliva is a glandular secretion that is vital in the maintenance of healthy oral tissues. In this review we outline the high abundance salivary proteins, summarise the status of the salivary proteome and peptidome, the genetic origin and recognised functions of these proteins, the diseases associated with salivary disorders, and the emerging saliva-derived peptide therapeutics. Different proteomic approaches have reported the identification of over 1,300 proteins in saliva. However there are fewer than 100 high abundance proteins, identified by multiple methods including, two-dimensional polyacrylamide gel electrophoresis and HPLC combined with mass spectrometry. Analysis of the genes coding for the salivary proteins demonstrated a non-uniform chromosomal distribution with chromosome 4 having the largest proportion of genes expressed in salivary glands. Several diseases are associated with salivary disorders including Sjögren’s syndrome, Prader-Willi syndrome, dental caries and stress related disorders. Saliva as a diagnostic medium for various biochemical tests has provided a non-invasive and accessibility advantage over other more regularly tested body fluids such as blood and urine. To-date the emerging saliva-based therapeutics include artificial salivas and antimicrobial agents based on histatins and mucins.


Journal of Proteome Research | 2009

Outer Membrane Proteome and Antigens of Tannerella forsythia

Paul D. Veith; Neil M. O’Brien-Simpson; Yan Tan; Deasy C. Djatmiko; Stuart G. Dashper; Eric C. Reynolds

Tannerella forsythia is a Gram-negative, anaerobic, fusiform bacterium implicated as a periodontal pathogen. With use of 2D PAGE, SDS PAGE, and LC-MALDI-TOF/TOF MS, 221 proteins of T. forsythia outer membrane preparations were identified, of which 197 were predicted to be localized to the cell envelope. Fifty-six proteins were reproducibly mapped by 2D PAGE and included several highly abundant proteins in the MW range 140-250 kDa that exhibited C-terminal sequence similarity to the CTD family of Porphyromonas gingivalis. Two-dimensional Western blot analyses revealed that these CTD family proteins together with several other outer membrane proteins were antigenic. The CTD family proteins exhibited a higher than expected MW, and were strongly reactive with the fluorescent glycoprotein stain, ProQ Emerald. This group included BspA and surface layer proteins A and B. TonB-dependent receptors (TDRs) (46) were identified together with 28 putative lipoproteins whose genes are immediately downstream of a TDR gene. The major OmpA-like protein was found to be TF1331. Uniquely, it was found to exist as a homodimer held together by up to three disulfide bridges as demonstrated by MS/MS of a tryptic peptide derived from unreduced TF1331.


Journal of Bacteriology | 2009

Response of Porphyromonas gingivalis to Heme Limitation in Continuous Culture

Stuart G. Dashper; Ching-Seng Ang; Paul D. Veith; Helen L. Mitchell; Alvin W. Lo; Christine A. Seers; Katrina A. Walsh; Nada Slakeski; Dina Chen; J. Patricia Lissel; Catherine A. Butler; Neil M. O'Brien-Simpson; Ian G. Barr; Eric C. Reynolds

Porphyromonas gingivalis is an anaerobic, asaccharolytic, gram-negative bacterium that has essential requirements for both iron and protoporphyrin IX, which it preferentially obtains as heme. A combination of large-scale quantitative proteomic analysis using stable isotope labeling strategies and mass spectrometry, together with transcriptomic analysis using custom-made DNA microarrays, was used to identify changes in P. gingivalis W50 protein and transcript abundances on changing from heme-excess to heme-limited continuous culture. This approach identified 160 genes and 70 proteins that were differentially regulated by heme availability, with broad agreement between the transcriptomic and proteomic data. A change in abundance of the enzymes of the aspartate and glutamate catabolic pathways was observed with heme limitation, which was reflected in organic acid end product levels of the culture fluid. These results demonstrate a shift from an energy-efficient anaerobic respiration to a less efficient process upon heme limitation. Heme limitation also resulted in an increase in abundance of a protein, PG1374, which we have demonstrated, by insertional inactivation, to have a role in epithelial cell invasion. The greater abundance of a number of transcripts/proteins linked to invasion of host cells, the oxidative stress response, iron/heme transport, and virulence of the bacterium indicates that there is a broad response of P. gingivalis to heme availability.

Collaboration


Dive into the Paul D. Veith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Yen Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Dina Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge