Katsuyoshi Shimamura
Keio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsuyoshi Shimamura.
Hepatology | 2014
Kengo Tomita; Toshiaki Teratani; Takahiro Suzuki; Motonori Shimizu; Hirokazu Sato; Kazuyuki Narimatsu; Yoshikiyo Okada; Chie Kurihara; Rie Irie; Hirokazu Yokoyama; Katsuyoshi Shimamura; Shingo Usui; Hirotoshi Ebinuma; Hidetsugu Saito; Chikako Watanabe; Shunsuke Komoto; Atsushi Kawaguchi; Shigeaki Nagao; Kazuo Sugiyama; Ryota Hokari; Takanori Kanai; Soichiro Miura; Toshifumi Hibi
Although nonalcoholic steatohepatitis (NASH) is associated with hypercholesterolemia, the underlying mechanisms of this association have not been clarified. We aimed to elucidate the precise role of cholesterol in the pathophysiology of NASH. C57BL/6 mice were fed a control, high‐cholesterol (HC), methionine‐choline‐deficient (MCD), or MCD+HC diet for 12 weeks or a control, HC, high‐fat (HF), or HF+HC diet for 24 weeks. Increased cholesterol intake accelerated liver fibrosis in both the mouse models without affecting the degree of hepatocellular injury or Kupffer cell activation. The major causes of the accelerated liver fibrosis involved free cholesterol (FC) accumulation in hepatic stellate cells (HSCs), which increased Toll‐like receptor 4 protein (TLR4) levels through suppression of the endosomal‐lysosomal degradation pathway of TLR4, and thereby sensitized the cells to transforming growth factor (TGF)β‐induced activation by down‐regulating the expression of bone morphogenetic protein and activin membrane‐bound inhibitor. Mammalian‐cell cholesterol levels are regulated by way of a feedback mechanism mediated by sterol regulatory element‐binding protein 2 (SREBP2), maintaining cellular cholesterol homeostasis. Nevertheless, HSCs were sensitive to FC accumulation because the high intracellular expression ratio of SREBP cleavage‐activating protein (Scap) to insulin‐induced gene (Insig) disrupted the SREBP2‐mediated feedback regulation of cholesterol homeostasis in these cells. HSC activation subsequently enhanced the disruption of the feedback system by Insig‐1 down‐regulation. In addition, the suppression of peroxisome proliferator‐activated receptor γ signaling accompanying HSC activation enhanced both SREBP2 and microRNA‐33a signaling. Consequently, FC accumulation in HSCs increased and further sensitized these cells to TGFβ‐induced activation in a vicious cycle, leading to exaggerated liver fibrosis in NASH. Conclusion: These characteristic mechanisms of FC accumulation in HSCs are potential targets to treat liver fibrosis in liver diseases including NASH. (Hepatology 2014;58:154–169)
Gastroenterology | 2012
Toshiaki Teratani; Kengo Tomita; Takahiro Suzuki; Tetsuya Oshikawa; Hirokazu Yokoyama; Katsuyoshi Shimamura; Susumu Tominaga; Sadayuki Hiroi; Rie Irie; Yoshikiyo Okada; Chie Kurihara; Hirotoshi Ebinuma; Hidetsugu Saito; Ryota Hokari; Kazuo Sugiyama; Takanori Kanai; Soichiro Miura; Toshifumi Hibi
BACKGROUND & AIMS Some studies have indicated that dietary cholesterol has a role in the progression of liver fibrosis. We investigated the mechanisms by which dietary cholesterol might contribute to hepatic fibrogenesis. METHODS C57BL/6 mice were fed a high-cholesterol diet or a control diet for 4 weeks; liver fibrosis then was induced by bile-duct ligation or carbon tetrachloride administration. Hepatic stellate cells (HSCs) were isolated from mice fed high-cholesterol diets or from Niemann-Pick type C1-deficient mice, which accumulate intracellular free cholesterol. RESULTS After bile-duct ligation or carbon tetrachloride administration, mice fed high-cholesterol diets had significant increases in liver fibrosis and activation of HSCs compared with mice fed control diets. There were no significant differences in the degree of hepatocellular injury or liver inflammation, including hepatocyte apoptosis or Kupffer cell activation, between mice fed high-cholesterol or control diets. Levels of free cholesterol were much higher in HSCs from mice fed high-cholesterol diets than those fed control diets. In cultured HSCs, accumulation of free cholesterol in HSCs increased levels of Toll-like receptor 4 (TLR4), leading to down-regulation of bone morphogenetic protein and activin membrane-bound inhibitor (a pseudoreceptor for transforming growth factor [TGF]β); the HSCs became sensitized to TGFβ-induced activation. Liver fibrosis was not aggravated by the high-cholesterol diet in C3H/HeJ mice, which express a mutant form of TLR4; HSCs that express mutant TLR4 were not activated by accumulation of free cholesterol. CONCLUSIONS Dietary cholesterol aggravates liver fibrosis because free cholesterol accumulates in HSCs, leading to increased TLR4 signaling, down-regulation of bone morphogenetic protein and activin membrane-bound inhibitor, and sensitization of HSC to TGFβ. This pathway might be targeted by antifibrotic therapies.
Immunology | 2013
Kazuaki Yoneno; Tadakazu Hisamatsu; Katsuyoshi Shimamura; Nobuhiko Kamada; Riko Ichikawa; Mina T. Kitazume; Maiko Mori; Michihide Uo; Yuka Namikawa; Katsuyoshi Matsuoka; Toshiro Sato; Kazutaka Koganei; Akira Sugita; Takanori Kanai; Toshifumi Hibi
Bile acids (BAs) play important roles not only in lipid metabolism, but also in signal transduction. TGR5, a transmembrane receptor of BAs, is an immunomodulative factor, but its detailed mechanism remains unclear. Here, we aimed to delineate how BAs operate in immunological responses via the TGR5 pathway in human mononuclear cell lineages. We examined TGR5 expression in human peripheral blood monocytes, several types of in vitro differentiated macrophages (Mϕs) and dendritic cells. Mϕs differentiated with macrophage colony‐stimulating factor and interferon‐γ (Mγ‐Mϕs), which are similar to the human intestinal lamina propria CD14+ Mϕs that contribute to Crohns disease (CD) pathogenesis by production of pro‐inflammatory cytokines, highly expressed TGR5 compared with any other type of differentiated Mϕ and dendritic cells. We also showed that a TGR5 agonist and two types of BAs, deoxycholic acid and lithocholic acid, could inhibit tumour necrosis factor‐α production in Mγ‐Mϕs stimulated by commensal bacterial antigen or lipopolysaccharide. This inhibitory effect was mediated by the TGR5–cAMP pathway to induce phosphorylation of c‐Fos that regulated nuclear factor‐κB p65 activation. Next, we analysed TGR5 levels in lamina propria mononuclear cells (LPMCs) obtained from the intestinal mucosa of patients with CD. Compared with non‐inflammatory bowel disease, inflamed CD LPMCs contained more TGR5 transcripts. Among LPMCs, isolated CD14+ intestinal Mϕs from patients with CD expressed TGR5. In isolated intestinal CD14+ Mϕs, a TGR5 agonist could inhibit tumour necrosis factor‐α production. These results indicate that TGR5 signalling may have the potential to modulate immune responses in inflammatory bowel disease.
Journal of Hepatology | 2012
Kengo Tomita; Toshiaki Teratani; Takahiro Suzuki; Tetsuya Oshikawa; Hirokazu Yokoyama; Katsuyoshi Shimamura; Kiyoshi Nishiyama; Rie Irie; Tohru Minamino; Yoshikiyo Okada; Chie Kurihara; Hirotoshi Ebinuma; Hidetsugu Saito; Ippei Shimizu; Yohko Yoshida; Ryota Hokari; Kazuo Sugiyama; Kazuo Hatsuse; Junji Yamamoto; Takanori Kanai; Soichiro Miura; Toshifumi Hibi
BACKGROUND & AIMS The tumor suppressor p53 is a primary sensor of stressful stimuli, controlling a number of biologic processes. The aim of our study was to examine the roles of p53 in non-alcoholic steatohepatitis (NASH). METHODS Male wild type and p53-deficient mice were fed a methionine- and choline-deficient diet for 8 weeks to induce nutritional steatohepatitis. mRNA expression profiles in normal liver samples and liver samples from patients with non-alcoholic liver disease (NAFLD) were also evaluated. RESULTS Hepatic p53 and p66Shc signaling was enhanced in the mouse NASH model. p53 deficiency suppressed the enhanced p66Shc signaling, decreased hepatic lipid peroxidation and the number of apoptotic hepatocytes, and ameliorated progression of nutritional steatohepatitis. In primary cultured hepatocytes, transforming growth factor (TGF)-β treatment increased p53 and p66Shc signaling, leading to exaggerated reactive oxygen species (ROS) accumulation and apoptosis. Deficient p53 signaling inhibited TGF-β-induced p66Shc signaling, ROS accumulation, and hepatocyte apoptosis. Furthermore, expression levels of p53, p21, and p66Shc were significantly elevated in human NAFLD liver samples, compared with results obtained with normal liver samples. Among NAFLD patients, those with NASH had significantly higher hepatic expression levels of p53, p21, and p66Shc compared with the group with simple steatosis. A significant correlation between expression levels of p53 and p66Shc was observed. CONCLUSIONS p53 in hepatocytes regulates steatohepatitis progression by controlling p66Shc signaling, ROS levels, and apoptosis, all of which may be regulated by TGF-β. Moreover, p53/p66Shc signaling in the liver appears to be a promising target for the treatment of NASH.
Journal of Hepatology | 2014
Kengo Tomita; Toshiaki Teratani; Takahiro Suzuki; Motonori Shimizu; Hirokazu Sato; Kazuyuki Narimatsu; Shingo Usui; Hirotaka Furuhashi; Akifumi Kimura; Kiyoshi Nishiyama; Tadashi Maejima; Yoshikiyo Okada; Chie Kurihara; Katsuyoshi Shimamura; Hirotoshi Ebinuma; Hidetsugu Saito; Hirokazu Yokoyama; Chikako Watanabe; Shunsuke Komoto; Shigeaki Nagao; Kazuo Sugiyama; Suefumi Aosasa; Kazuo Hatsuse; Junji Yamamoto; Toshifumi Hibi; Soichiro Miura; Ryota Hokari; Takanori Kanai
BACKGROUND & AIMS Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes the conversion of free cholesterol (FC) to cholesterol ester, which prevents excess accumulation of FC. We recently found that FC accumulation in hepatic stellate cells (HSCs) plays a role in progression of liver fibrosis, but the effect of ACAT1 on liver fibrosis has not been clarified. In this study, we aimed to define the role of ACAT1 in the pathogenesis of liver fibrosis. METHODS ACAT1-deficient and wild-type mice, or Toll-like receptor 4 (TLR4)(-/-)ACAT1(+/+) and TLR4(-/-)ACAT1(-/-) mice were subjected to bile duct ligation (BDL) for 3 weeks or were given carbon tetrachloride (CCl4) for 4 weeks to induce liver fibrosis. RESULTS ACAT1 was the major isozyme in mice and human primary HSCs, and ACAT2 was the major isozyme in mouse primary hepatocytes and Kupffer cells. ACAT1 deficiency significantly exaggerated liver fibrosis in the mouse models of liver fibrosis, without affecting the degree of hepatocellular injury or liver inflammation, including hepatocyte apoptosis or Kupffer cell activation. ACAT1 deficiency significantly increased FC levels in HSCs, augmenting TLR4 protein and downregulating expression of transforming growth factor-β (TGFβ) pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor), leading to sensitization of HSCs to TGFβ activation. Exacerbation of liver fibrosis by ACAT1 deficiency was dependent on FC accumulation-induced enhancement of TLR4 signaling. CONCLUSIONS ACAT1 deficiency exaggerates liver fibrosis mainly through enhanced FC accumulation in HSCs. Regulation of ACAT1 activities in HSCs could be a target for treatment of liver fibrosis.
PLOS Genetics | 2015
Junji Umeno; Tadakazu Hisamatsu; Motohiro Esaki; Atsushi Hirano; Naoya Kubokura; Kouichi Asano; Shuji Kochi; Shunichi Yanai; Yuta Fuyuno; Katsuyoshi Shimamura; Naoki Hosoe; Haruhiko Ogata; Takashi Watanabe; Kunihiko Aoyagi; Hidehisa Ooi; Kenji Watanabe; Shigeyoshi Yasukawa; Fumihito Hirai; Toshiyuki Matsui; Mitsuo Iida; Tsuneyoshi Yao; Toshifumi Hibi; Kenjiro Kosaki; Takanori Kanai; Takanari Kitazono; Takayuki Matsumoto
Previously, we proposed a rare autosomal recessive inherited enteropathy characterized by persistent blood and protein loss from the small intestine as chronic nonspecific multiple ulcers of the small intestine (CNSU). By whole-exome sequencing in five Japanese patients with CNSU and one unaffected individual, we found four candidate mutations in the SLCO2A1 gene, encoding a prostaglandin transporter. The pathogenicity of the mutations was supported by segregation analysis and genotyping data in controls. By Sanger sequencing of the coding regions, 11 of 12 other CNSU patients and 2 of 603 patients with a diagnosis of Crohn’s disease were found to have homozygous or compound heterozygous SLCO2A1 mutations. In total, we identified recessive SLCO2A1 mutations located at seven sites. Using RT-PCR, we demonstrated that the identified splice-site mutations altered the RNA splicing, and introduced a premature stop codon. Tracer prostaglandin E2 uptake analysis showed that the mutant SLCO2A1 protein for each mutation exhibited impaired prostaglandin transport. Immunohistochemistry and immunofluorescence analyses revealed that SLCO2A1 protein was expressed on the cellular membrane of vascular endothelial cells in the small intestinal mucosa in control subjects, but was not detected in affected individuals. These findings indicate that loss-of-function mutations in the SLCO2A1 gene encoding a prostaglandin transporter cause the hereditary enteropathy CNSU. We suggest a more appropriate nomenclature of “chronic enteropathy associated with SLCO2A1 gene” (CEAS).
Hepatology Research | 2013
Jonathan Chang; Tadakazu Hisamatsu; Katsuyoshi Shimamura; Kazuaki Yoneno; Masayuki Adachi; Hiroshi Naruse; Toru Igarashi; Hajime Higuchi; Katsuyoshi Matsuoka; Mina T. Kitazume; Setsu Ando; Nobuhiko Kamada; Takanori Kanai; Toshifumi Hibi
Liver macrophages play integral roles in both the progression and resolution of hepatic inflammation and fibrosis, comprising opposing functions that largely coincide with the activation state of nearby hepatic stellate cells (HSC). While cross‐talk between HSC and macrophages may be essential at various stages of inflammation and fibrogenesis, many facets of this interaction have yet to be thoroughly explored. Here, we examine the potential roles of HSC‐derived signaling molecules as mediators of liver macrophage differentiation.
Immunology Letters | 2016
Hiroaki Suzuki; Tadakazu Hisamatsu; Sayako Chiba; Kiyoto Mori; Mina T. Kitazume; Katsuyoshi Shimamura; Nobuhiro Nakamoto; Katsuyoshi Matsuoka; Hirotoshi Ebinuma; Makoto Naganuma; Takanori Kanai
Cellular metabolic state and individual metabolites have been reported to regulate the functional phenotype of immune cells. Cytokine production by regulatory and inflammatory macrophages is thought to mainly involve fatty acid oxidation and glycolysis, respectively, which fuel mitochondrial oxidative phosphorylation. However, the association between metabolic pathways and the acquisition of specific macrophage phenotypes remains unclear. This study assessed the relationship between glycolysis and the differentiation of regulatory macrophages. Human monocytes derived from peripheral blood were cultured in vitro in the presence of macrophage colony-stimulating factor to yield regulatory macrophages (M-Mϕs). M-Mϕs had a regulatory macrophage phenotype and produced substantial IL-10 following stimulation with lipopolysaccharide. To analyze the role of glycolysis, glycolysis inhibitors (2-deoxy-d-glucose or dichloroacetate) were added during M-Mϕ differentiation. These cells cultured with glycolysis inhibitors produced significantly lower amounts of IL-10, but produced significantly higher amounts of IL-6 compared to M-Mϕs differentiated without glycolysis inhibitors. Such phenotypic change of M-Mϕs differentiated with glycolysis inhibitors was associated with the alteration of the gene expression pattern related to macrophage differentiation, such as CSF1, MMP9 and VEGFA. M-Mϕs differentiated with glycolysis inhibitors seemed to retain plasticity to become IL-10 producing cells. Furthermore, increased level of pyruvate in culture medium was found to partially reverse the effects of glycolysis inhibitors on cytokine production of M-Mϕs. These results indicate the importance of glycolytic pathway in macrophage differentiation to a regulatory phenotype, and pyruvate may be one of the key metabolites in this process.
Immunology Letters | 2017
Sayako Chiba; Tadakazu Hisamatsu; Hiroaki Suzuki; Kiyoto Mori; Mina T. Kitazume; Katsuyoshi Shimamura; Shinta Mizuno; Nobuhiro Nakamoto; Katsuyoshi Matsuoka; Makoto Naganuma; Takanori Kanai
M1 and M2 macrophages are the key players in innate immunity, and are associated with tissue homeostasis and diseases. Although M2 macrophages are known to depend on fatty acid oxidation (FAO) for their activation, how metabolic pathways affect the production of each cytokine induced by pathogen or bacterial components is unclear. Here, we examined the role of the glycolytic pathway in M2 polarized human macrophages in cytokine production induced by lipopolysaccharide (LPS) stimulation. Human monocytes were isolated from peripheral blood by positive selection for CD14 expression and cultured with macrophage colony-stimulating factor (M-CSF), to obtain M-CSF-induced macrophages (M-MΦ). LPS-induced cytokine production by M-MΦ in the presence or absence of metabolic inhibitors was evaluated. M-MΦ showed a M2 macrophage phenotype with a high IL-10 production level. Glycolytic pathway inhibitors reduced IL-6 production by M-MΦ. Meanwhile, an FAO inhibitor suppressed IL-10 production, while it did not suppress IL-6 production. Interestingly, glycolytic pathway inhibitors downregulated extracellular signal-regulated kinase (ERK) phosphorylation, but FAO inhibitor did not. Nuclear factor kappa B (NF-κB) and the other mitogen-activated protein kinases (MAPKs), p38 and c-jun N-terminal kinase (JNK), were not affected by these metabolic inhibitors. These results suggest that M2 polarized human macrophages use the glycolytic pathway in addition to FAO for cytokine production. Furthermore, ERK may be the key molecule that links metabolic pathways to cytokine production, especially the glycolytic pathway.
Intestinal Research | 2018
Kiyoto Mori; Makoto Naganuma; Shinta Mizuno; Hiroaki Suzuki; Mina T. Kitazume; Katsuyoshi Shimamura; Sayako Chiba; Akira Sugita; Katsuyoshi Matsuoka; Tadakazu Hisamatsu; Takanori Kanai
Background/Aims Recent research has highlighted the importance of interactions between commensal fungi and intestinal inflammation. However, there are few studies investigating whether commensal fungi contribute to inflammation in patients with Crohns disease (CD). The aim of this study is to investigate reveal interactions between commensal fungi and host immune cells in CD. Methods CD14-positive monocytes were isolated from peripheral blood mononuclear cells from healthy human volunteers and then differentiated in the presence of macrophage colony-stimulating factor (M-CSF) (referred to as M-macrophages, M-Mϕs) or M-CSF and interferon-γ (IFN-γ) (referred to as M-gamma macrophages, Mγ-Mϕs). Cytokine production by these in vitro differentiated macrophages in response to β-(1,3)-glucan was analyzed by flow cytometry. Expression of Dectin-1 was examined using flow cytometry, western blotting, and quantitative reverse transcription-polymerase chain reaction. Cytokine production by in vitro differentiated macrophages in response to β-(1,3)-glucan was measured in the presence of an anti-Dectin-1 receptor antagonist, anti-Syr, or an anti-Fas-1 antibody. Cytokine production by lamina propria mononuclear cells (LPMCs) derived from CD patients in response to β-(1,3)-glucan was also analyzed. Results Mγ-Mϕs produced a large amount of tumor necrosis factor-α (TNF-α) and interleukin-6 in response to β-(1,3)-glucan. Dectin-1 expression was significantly higher in Mγ-Mϕs than in M-Mϕs. The increase in TNF-α production by Mγ-Mϕs stimulated with glucan was reversed by blocking Dectin-1, Syr or Fas-1. LPMCs derived from CD patients stimulated with β-(1,3)-glucan produced significantly higher amount of TNF-α than LPMCs derived from UC patients. Conclusions These results suggest that commensal fungal microbiota may contribute to the pathogenesis of CD by inducing macrophages-derived pro-inflammatory cytokines.