Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuaki Ninomiya is active.

Publication


Featured researches published by Kazuaki Ninomiya.


Bioresource Technology | 2012

Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature

Kazuaki Ninomiya; Kazuki Kamide; Kenji Takahashi; Nobuaki Shimizu

This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.


Ultrasonics Sonochemistry | 2008

Sonocatalytic facilitation of hydroxyl radical generation in the presence of TiO2

Nobuaki Shimizu; Chiaki Ogino; Mahmoud Farshbaf Dadjour; Kazuaki Ninomiya; Atsushi Fujihira; Kazumichi Sakiyama

The generation of hydroxyl (OH) radicals was investigated during ultrasonic irradiation and in the presence of TiO(2). The effect of TiO(2) on an ultrasonic systems oxidation power was evaluated by examining the oxidation of salicylic acid. The generation of the salicylic acid derivatives, 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA, was measured by high-performance liquid chromatography coupled with electrochemical detection under different experimental conditions. The presence of TiO(2) enhanced the generation of DHBA during ultrasonic irradiation, thus indicating a higher oxidation power in the ultrasonic system. Al(2)O(3) also increased the generation of DHBA during irradiation; however, the effect of TiO(2) was found to be higher than that of Al(2)O(3). The addition of OH radical scavengers such as dimethylsulfoxide (DMSO), methanol and mannitol significantly suppressed the production of DHBA, and DMSO was found to have the highest suppressive effect among all scavengers. The effects of dissolved gases on the generation of OH radicals were further studied, and their power was found to be in the order Xe > Ar > O(2) > N(2). The degassing of the irradiation solution completely suppressed the generation of OH radicals. These results indicate that the presence of TiO(2) accelerates the generation of OH radicals during ultrasonic irradiation, and that the process may be mediated through the induction of cavitation bubbles in irradiating solutions.


Journal of Bioscience and Bioengineering | 2008

Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production

Naoyuki Okuda; Kazuaki Ninomiya; Yoshio Katakura; Suteaki Shioya

Hydrolysates of lignocelluloses hydrolyzed by diluted sulfuric acid contain toxic compounds that inhibit ethanol production by Saccharomyces cerevisiae and the ethanologenic recombinant Escherichia coli KO11. We investigated the biological detoxification of a hydrolysate of waste house wood (WHW) by a thermophilic bacterium, Ureibacillus thermosphaericus. When the hydrolysate was treated with this bacterium at 50 degrees C for 24 h, the ethanol production rate by S. cerevisiae increased markedly and was comparable to that for the hydrolysate treated with an excess amount of calcium hydroxide (overliming). Chromatographic analysis of synthetic hydrolysates containing furfural or 5-hydroxymethyl furfural that are considered to be major toxic compounds in hydrolysates revealed that U. thermosphaericus degrades these compounds. In the WHW hydrolysates, however, the concentrations of these compounds were not decreased markedly by the bacterium. These results suggest that the bacterium degrades minor but more toxic compounds or phenolic compounds in the WHW hydrolysates. The combination of bacterial and overliming treatments of hydrolysates minimized significantly the decrease in ethanol production rate by E. coli KO11 as fermentation proceeded. Because the bacterium grows rapidly and does not consume sugars, our biological detoxification should be useful for bioethanol production from acid hydrolysates of lignocelluloses.


Bioresource Technology | 2013

Effect of ionic liquid weight ratio on pretreatment of bamboo powder prior to enzymatic saccharification

Kazuaki Ninomiya; Hiroshi Soda; Chiaki Ogino; Kenji Takahashi; Nobuaki Shimizu

The pretreatment efficiency of weight ratios ranging from 0 to 10 of the ionic liquid, cholinum IL, to bamboo powder was investigated. An IL/biomass ratio of 3g/g was critical to obtain a cellulose saccharification ratio of 80%. At this ratio, the treated bamboo powder remained as a solid. The solid-state pretreatment required a minimum amount of cholinium IL, which could reduce the cost of IL-assisted pretreatment and reduce the amount of wastewater generated in the process.


Ultrasonics Sonochemistry | 2012

Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles

Kazuaki Ninomiya; Chiaki Ogino; Shuhei Oshima; Shiro Sonoke; Shun'ichi Kuroda; Nobuaki Shimizu

Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO(2)) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO(2) NPs activated by external ultrasound irradiation (called TiO(2)/US treatment). The present study first examined the uptake behavior of TiO(2) NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24h. It took 6h for sufficient uptake of the TiO(2) NPs by the cells. Next, the effect of the TiO(2)/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm(2), 30s) to the cells which incorporated the TiO(2) NPs. Apoptosis was observed at 6h after the TiO(2)/US treatment. Although no apparent cell-injury was observed until 24h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO(2)/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO(2) (0.1mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm(2) for 60s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions.


Ultrasonics Sonochemistry | 2014

Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer

Kazuaki Ninomiya; Shinya Kawabata; Hiroyuki Tashita; Nobuaki Shimizu

Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation.


Bioresource Technology | 2015

Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid

Kazuaki Ninomiya; Asami Kohori; Mai Tatsumi; Koji Osawa; Takatsugu Endo; Ryohei Kakuchi; Chiaki Ogino; Nobuaki Shimizu; Kenji Takahashi

Choline acetate (ChOAc), a cholinium ionic liquid (IL), showed almost the same bagasse pretreatment capability as 1-ethyl-3-methylimidazolium acetate (EmimOAc), a conventional imidazolium IL used for biomass pretreatment. Moreover, ChOAc showed less of an inhibitory effect on cellulase than EmimOAc. Thus, ChOAc was used for IL/ultrasound-assisted pretreatment and in situ enzymatic saccharification, where IL was not washed out from the pretreated bagasse but diluted with the addition of a buffer solution. When in situ saccharification was performed for 48h in the presence of 10% ChOAc, the cellulose and hemicellulose saccharification percentages were 80% and 72%, respectively. When ChOAc was increased to 20%, the saccharification percentages were 72% and 53%, respectively. However, the values were just 28% and 2%, respectively, in case of 20% EmimOAc. A glucose/xylose solution free from IL and ChOAc aqueous solution without these sugars could be recovered separately by electrodialysis of the hydrolysate of in situ saccharification.


Ultrasonics Sonochemistry | 2013

Sonocatalytic–Fenton reaction for enhanced OH radical generation and its application to lignin degradation

Kazuaki Ninomiya; Hiromi Takamatsu; Ayaka Onishi; Kenji Takahashi; Nobuaki Shimizu

The present study demonstrated that the combined use of the sonocatalytic reaction (using ultrasound and titanium dioxide) and the Fenton reaction exhibited synergistically enhanced hydroxyl (OH) radical generation. Dihydroxybenzoic acid (DHBA) concentration as index of OH radical generation was 13 and 115 μM at 10 min in the sonocatalytic reaction and Fenton reaction, respectively. On the other hand, the DHBA concentration was 378 μM at 10 min in the sonocatalytic-Fenton reaction. The sonocatalytic-Fenton reaction was used for degradation of lignin. The lignin degradation ratio was 1.8%, 49.9%, and 60.0% at 180 min in the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Moreover, the sonocatalytic-Fenton reaction was applied to pretreatment of lignocellulosic biomass to enhance subsequent enzymatic saccharification. The cellulose saccharification ratio was 11%, 14%, 16% and 25% at 360 min of pretreatment by control reaction, the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively.


Journal of Bioscience and Bioengineering | 2008

Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae.

Naoyuki Okuda; Kazuaki Ninomiya; Yoshio Katakura; Suteaki Shioya

In this paper, we report a simultaneous realization of both efficient ethanol production and saving medium nutrient (corn steep liquor [CSL]) during bioethanol fermentation of overliming-treated hydrolysate of waste house wood (WHW) using ethanologenic Escherichia coli KO11. In cultivation using WHW hydrolysate supplemented with 4% (v/v) CSL and 0.2 g-dry cell weight (DCW)/l E. coli KO11 cells, the overall ethanol yield reached 84% of the theoretical value at 61 h. When we conducted the cultivation with 1% CSL to reduce the supplemental medium cost, the overall ethanol yield remained in the range of 66-72% even at 90 h. We proposed two alternative methods for increasing the overall yield even with 1% CSL. The first method involved increasing the inoculum size of E. coli KO11 up to 0.8 g-DCW/l, where 83% of the overall yield was attained at 60 h of cultivation. The second method involved the coculture of 0.2 g-DCW/l E. coli KO11 together with 0.02 g-DCW/l of Saccharomyces cerevisiae TJ1, and the overall yield reached 81% at 47 h of cultivation.


Bioorganic & Medicinal Chemistry Letters | 2010

Construction of protein-modified TiO2 nanoparticles for use with ultrasound irradiation in a novel cell injuring method

Chiaki Ogino; Naonori Shibata; Ryosuke Sasai; Keiko Takaki; Yusuke Miyachi; Shun'ichi Kuroda; Kazuaki Ninomiya; Nobuaki Shimizu

Recently, our group discovered an alternative titanium dioxide (TiO(2)) activation method that uses ultrasound irradiation (US/TiO(2)) instead of ultraviolet irradiation. The pre-S1/S2 protein from hepatitis B virus, which recognizes liver cells, was immobilized to the surface of TiO(2) nanoparticles using an amino-coupling method. The ability of the protein-modified TiO(2) nanoparticles to recognize liver cells was confirmed by surface plasmon resonance analysis and immuno-staining analyses. After uptake of TiO(2) nanoparticles by HepG2 cancer cells, the cells were injured using this US/TiO(2) method; significant cell injury was observed at an ultrasound irradiation intensity of 0.4 W/cm(2). Together with these results, this strategy could be applied to new cell injuring systems that use ultrasound irradiation in place of photodynamic therapy in the near future.

Collaboration


Dive into the Kazuaki Ninomiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge