Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshio Katakura is active.

Publication


Featured researches published by Yoshio Katakura.


Journal of Fermentation and Bioengineering | 1998

Effect of methanol concentration on the production of human β2-glycoprotein I domain V by a recombinant Pichia pastoris: A simple system for the control of methanol concentration using a semiconductor gas sensor

Yoshio Katakura; Wenhui Zhang; Guoqiang Zhuang; Takeshi Omasa; Michimasa Kishimoto; Yuji Goto; Ken-ichi Suga

Abstract The methylotrophic yeast Pichia pastoris is one of the best hosts for the production of foreign proteins because of the presence of the strong AOX1 promoter induced by methanol. Methanol feeding during the production phase of the foreign proteins is important because methanol not only induces protein production but also provides energy source for the host cells. Excess methanol inhibits the growth of host cells, while an insufficient amount of energy source and/or methanol starvation lead to poor growth and production. We constructed a simple methanol control system consisting of a semiconductor gas sensor and a relay. Using this system, we studied the effect of methanol concentration on the production of a model foreign protein, human β2-glycoprotein I domain V. The methanol concentrations were kept constant at 1.5, 10, 17, or 31 g·l−1 (±5%) during the production phase. Although the specific rates of growth and methanol consumption decreased with increase in the methanol concentration, the specific production rates increased, indicating that the energy for the production competed with that for cell growth. Accordingly, we provided glycerol as an extra energy source during the production phase, with the result that the specific production rate increased two times. Our simple and inexpensive system will help bioengineering studies on the production of recombinant proteins in P. pastoris, the growth and production of objective proteins in which are dependent on the methanol concentration.


Biotechnology Progress | 2000

Amplified Gene Location in Chromosomal DNA Affected Recombinant Protein Production and Stability of Amplified Genes

Tomohiro Yoshikawa; Fumi Nakanishi; Yuki Ogura; Daisuke Oi; Takeshi Omasa; Yoshio Katakura; Michimasa Kishimoto; Ken-ichi Suga

Previously, we established an easy and quick construction method for obtaining a stable and highly productive gene‐amplified recombinant Chinese hamster ovary (CHO) cell line. With a gradual increase in methotrexate (MTX) concentration, gene‐amplified cell pools had high and stable specific growth and production rates. Moreover, the phenotype of gene‐amplified cells seemed to be affected by the location of the amplified gene in chromosomal DNA. We suspected that various kinds of gene‐amplified cells might appear during the long‐term selection to construct gene‐amplified cell pools. To clarify the behavior of gene‐amplified cell pools during a stepwise increase of MTX concentration, we isolated gene‐amplified clones derived from gene‐amplified cell pools. We compared the characteristics of isolated clones, such as the productivity of recombinant protein, stability of amplified genes, and the location of amplified genes. As a result, telomere‐type clones, in which the amplified gene was located near the telomeric region, were found to be more stable and productive than other types of clones. Telomere‐type clones had over 100 copies of amplified genes in the chromosomal DNA. In contrast, a large number of other types of clones had less than 10 copies of amplified genes. During long‐term cultivation in the absence of MTX, in other types of clones, amplified genes rapidly decreased in the chromosomal DNA.


Applied Microbiology and Biotechnology | 2006

Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray

Takashi Hirasawa; Yuki Nakakura; Katsunori Yoshikawa; Kengo Ashitani; Keisuke Nagahisa; Chikara Furusawa; Yoshio Katakura; Hiroshi Shimizu; Suteaki Shioya

To construct yeast strains showing tolerance to high salt concentration stress, we analyzed the transcriptional response to high NaCl concentration stress in the yeast Saccharomycescerevisiae using DNA microarray and compared between two yeast strains, a laboratory strain and a brewing one, which is known as a stress-tolerant strain. Gene expression dynamically changed following the addition of NaCl in both yeast strains, but the degree of change in the gene expression level in the laboratory strain was larger than that in the brewing strain. The response of gene expression to the low NaCl concentration stress was faster than that to the high NaCl concentration stress in both strains. Expressions of the genes encoding enzymes involved in carbohydrate metabolism and energy production in both strains or amino acid metabolism in the brewing strain were increased under high NaCl concentration conditions. Moreover, the genes encoding sodium ion efflux pump and copper metallothionein proteins were more highly expressed in the brewing strain than in the laboratory strain. According to the results of transcriptome analysis, candidate genes for the creation of stress-tolerant strain were selected, and the effect of overexpression of candidate genes on the tolerance to high NaCl concentration stress was evaluated. Overexpression of the GPD1 gene encoding glycerol-3-phosphate dehydrogenase, ENA1 encoding sodium ion efflux protein, and CUP1 encoding copper metallothionein conferred high salt stress tolerance to yeast cells, and our selection of candidate genes for the creation of stress-tolerant yeast strains based on the transcriptome data was validated.


Journal of Bioscience and Bioengineering | 2008

Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production

Naoyuki Okuda; Kazuaki Ninomiya; Yoshio Katakura; Suteaki Shioya

Hydrolysates of lignocelluloses hydrolyzed by diluted sulfuric acid contain toxic compounds that inhibit ethanol production by Saccharomyces cerevisiae and the ethanologenic recombinant Escherichia coli KO11. We investigated the biological detoxification of a hydrolysate of waste house wood (WHW) by a thermophilic bacterium, Ureibacillus thermosphaericus. When the hydrolysate was treated with this bacterium at 50 degrees C for 24 h, the ethanol production rate by S. cerevisiae increased markedly and was comparable to that for the hydrolysate treated with an excess amount of calcium hydroxide (overliming). Chromatographic analysis of synthetic hydrolysates containing furfural or 5-hydroxymethyl furfural that are considered to be major toxic compounds in hydrolysates revealed that U. thermosphaericus degrades these compounds. In the WHW hydrolysates, however, the concentrations of these compounds were not decreased markedly by the bacterium. These results suggest that the bacterium degrades minor but more toxic compounds or phenolic compounds in the WHW hydrolysates. The combination of bacterial and overliming treatments of hydrolysates minimized significantly the decrease in ethanol production rate by E. coli KO11 as fermentation proceeded. Because the bacterium grows rapidly and does not consume sugars, our biological detoxification should be useful for bioethanol production from acid hydrolysates of lignocelluloses.


Bioorganic & Medicinal Chemistry Letters | 2000

In vitro selection of hematoporphyrin binding DNA aptamers

Atsushi Okazawa; Hiroshi Maeda; Eiichiro Fukusaki; Yoshio Katakura; Akio Kobayashi

DNA aptamers that bind to hematoporphyrin IX (HPIX) were isolated using an in vitro selection technique. Most aptamers obtained after the 7th and 10th rounds contained guanine-rich sequences. Binding assay using fluorescence polarization technique and structural analysis by CD spectra revealed that the parallel guanine-quartet structure of the aptamer participates in the recognition of HPIX.


Cytotechnology | 2000

Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes

Tomohiro Yoshikawa; Fumi Nakanishi; Seima Itami; Daisuke Kameoka; Takeshi Omasa; Yoshio Katakura; Michimasa Kishimoto; Ken-ichi Suga

In order to establish an easy and quick construction method for obtaining a stable and highly productive gene-amplified recombinant Chinese Hamster Ovary (CHO) cell line, variouskinds of stepwise methotrexate (MTX) selection were carriedout. The specific growth and production rates of the cell were compared with each other, and the distribution of the amplified gene location was determined using fluorescence in situ hybridization (FISH). The specific growth andproduction rates of the cell pool reached the highest levels under the selection condition in which the stepwise increase in the MTX concentration was most gradual; about 82% of amplified genes were observed near the telomeric region. During long-term cultivation without MTX, the percentage ofamplified genes near the telomeric region hardly changed, butthat of amplified genes at other regions decreased. Based on these results, stable and highly productive cell pools could be easily and quickly constructed and amplified and gradual stepwise increase of the MTX concentration. In addition, the FISH technique was powerful tool to evaluate highly productiveand stable gene-amplified cells based on the chromosomal location of the amplified gene.


Journal of Industrial Microbiology & Biotechnology | 2008

Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly(3-hydroxybutyrate- co -4-hydroxybutyrate) production

Suchada Chanprateep; Yoshio Katakura; Sirirat Visetkoop; Hiroshi Shimizu; Songsri Kulpreecha; Suteaki Shioya

A new isolated bacterial strain A-04 capable of producing high content of polyhydroxyalkanoates (PHAs) was morphologically and taxonomically identified based on biochemical tests and 16S rRNA gene analysis. The isolate is a member of the genus Ralstonia and close to Ralstonia eutropha. Hence, this study has led to the finding of a new and unexplored R. eutropha strain A-04 capable of producing PHAs with reasonable yield. The kinetic study of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] production by the R. eutropha strain A-04 was examined using butyric acid and γ–hydroxybutyric acid as carbon sources. Effects of substrate ratio and mole ratio of carbon to nitrogen (C/N) on kinetic parameters were investigated in shake flask fed-batch cultivation. When C/N was 200, that is, nitrogen deficient condition, the specific production rate of 3-hydroxybutyrate (3HB) showed the highest value, whereas when C/N was in the range between 4 and 20, the maximum specific production rate of 4-hydroxybutyrate (4HB) was obtained. Thus, the synthesis of 3HB was growth-limited production under nitrogen-deficient condition, whereas the synthesis of 4HB was growth-associated production under nitrogen-sufficient condition. The mole fraction of 4HB units increased proportionally as the ratio of γ–hydroxybutyric acid in the feed medium increased at any value of C/N ratio. Based on these kinetic studies, a simple strategy to improve P(3HB-co-4HB) production in shake flask fed-batch cultivation was investigated using C/N and substrate feeding ratio as manipulating variable, and was successfully proved by the experiments.


Analytical and Bioanalytical Chemistry | 2009

Direct immobilization of functional single-chain variable fragment antibodies (scFvs) onto a polystyrene plate by genetic fusion of a polystyrene-binding peptide (PS-tag)

Yoichi Kumada; Kyoko Hamasaki; Yuki Shiritani; Aya Nakagawa; Daisuke Kuroki; Takuhito Ohse; Dong Hwan Choi; Yoshio Katakura; Michimasa Kishimoto

Single-chain Fv antibodies (scFv) genetically fused with polystyrene-binding peptides (PS-tags, (PS19-1; RAFIASRRIRRP, PS19-6; RIIIRRIRR)) were generated by recombinant Escherichia coli for direct and site-specific immobilization of scFv on polystyrene supports with high antigen-binding activity. PS-tag-fused scFvs (scFv-PS-tags) specific for human C-reactive protein (CRP) were successfully over-expressed as an inclusion body and were refolded using the batch-dilution method. When scFv-PS-tags were immobilized on a hydrophilic PS (phi-PS) plate in the presence of Tween 20, they showed high antigen-binding activity comparable to, or greater than, that of a whole monoclonal antibody (mAb) on a hydrophobic PS (pho-PS) plate, which has been the exclusive method for enzyme-linked immunosorbent assay (ELISA). Furthermore, when a scFv-PS-tag was used as a ligand antibody in one- and two-step ELISA, the assay time was reduced without loss of sensitivity. These results indicate that strong and specific attachment of PS-tags onto the phi-PS surface prevented scFv conformational changes and consequently, the high antigen-binding activities of scFvs were preserved. Nearly identical results were obtained by use of PS-tag-fused scFvs with different VH/VL pairs. Therefore, a variety of scFvs could be functionalized onto phi-PS plates by genetic fusion of PS-tags. ScFv-PS-tags, which possess high antigen-binding activity on the phi-PS plate, are more useful ligand antibodies than whole mAbs. Thus, scFv-PS-tags are applicable in both clinical diagnosis and proteomic research.


Journal of Bioscience and Bioengineering | 2008

Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae.

Naoyuki Okuda; Kazuaki Ninomiya; Yoshio Katakura; Suteaki Shioya

In this paper, we report a simultaneous realization of both efficient ethanol production and saving medium nutrient (corn steep liquor [CSL]) during bioethanol fermentation of overliming-treated hydrolysate of waste house wood (WHW) using ethanologenic Escherichia coli KO11. In cultivation using WHW hydrolysate supplemented with 4% (v/v) CSL and 0.2 g-dry cell weight (DCW)/l E. coli KO11 cells, the overall ethanol yield reached 84% of the theoretical value at 61 h. When we conducted the cultivation with 1% CSL to reduce the supplemental medium cost, the overall ethanol yield remained in the range of 66-72% even at 90 h. We proposed two alternative methods for increasing the overall yield even with 1% CSL. The first method involved increasing the inoculum size of E. coli KO11 up to 0.8 g-DCW/l, where 83% of the overall yield was attained at 60 h of cultivation. The second method involved the coculture of 0.2 g-DCW/l E. coli KO11 together with 0.02 g-DCW/l of Saccharomyces cerevisiae TJ1, and the overall yield reached 81% at 47 h of cultivation.


Bioprocess and Biosystems Engineering | 2010

Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture

Takeshi Omasa; Keisuke Furuichi; Tomoya Iemura; Yoshio Katakura; Michimasa Kishimoto; Ken-ichi Suga

Generally, mammalian cells utilize glucose and glutamine as primary energy sources. To investigate the effect of energy sources on metabolic fluxes and antibody production, glucose- or glutamine-limited serum-free continuous culture of hybridoma 3A21 cells, which produce anti-ribonuclease A antibody, was carried out. The cell volume and dry cell weight were evaluated under various steady-state conditions. The specific consumption and production rates were evaluated on the basis of dry cell weight. On the basis of these results, the fluxes of the metabolic pathway were calculated. It was found that increasing the specific growth rate causes the specific ATP and antibody production rates to decrease. The fluxes between malate and pyruvate also decreased with the increase in specific growth rate. To increase the ATP production rate under steady-state conditions by the enhancement of fluxes between malate and pyruvate, the reduced metabolic fluxes were increased by an intermediate (pyruvate, malate, and citrate) addition. As a result, higher specific ATP and antibody production rates were achieved following the intermediate addition at a constant dilution rate.

Collaboration


Dive into the Yoshio Katakura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michimasa Kishimoto

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge