Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuki Kurimoto is active.

Publication


Featured researches published by Kazuki Kurimoto.


Science | 2012

Offspring from Oocytes Derived from in Vitro Primordial Germ Cell–like Cells in Mice

Katsuhiko Hayashi; Sugako Ogushi; Kazuki Kurimoto; So Shimamoto; Hiroshi Ohta; Mitinori Saitou

Artificially Induced Oocytes In mice, male embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been shown to differentiate into primordial germ cell–like cells (PGCLCs) in vitro. Upon transplantation into testes, these PGCLCs can form fully functional sperm. Again working in mice, Hayashi et al. (p. 971, published online 4 October) found that female ESCs and iPSCs can also differentiate into PGCLCs, which, when aggregated in reconstituted ovaries, exhibited epigenetic reprogramming and meiotic potential in vitro. Upon transplantation of the reconstituted ovaries under ovarian bursa, female PGCLCs developed into fully grown oocytes that contributed to healthy offspring upon in vitro maturation and fertilization. Mature, fully functional female gametes can be generated from mouse pluripotent stem cells. Reconstitution of female germ cell development in vitro is a key challenge in reproductive biology and medicine. We show here that female (XX) embryonic stem cells and induced pluripotent stem cells in mice are induced into primordial germ cell–like cells (PGCLCs), which, when aggregated with female gonadal somatic cells as reconstituted ovaries, undergo X-reactivation, imprint erasure, and cyst formation, and exhibit meiotic potential. Upon transplantation under mouse ovarian bursa, PGCLCs in the reconstituted ovaries mature into germinal vesicle-stage oocytes, which then contribute to fertile offspring after in vitro maturation and fertilization. Our culture system serves as a robust foundation for the investigation of key properties of female germ cells, including the acquisition of totipotency, and for the reconstitution of whole female germ cell development in vitro.


Nature | 1999

Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein

Noriko Handa; Osamu Nureki; Kazuki Kurimoto; Insil Kim; Hiroshi Sakamoto; Yoshiro Shimura; Yutaka Muto; Shigeyuki Yokoyama

The Sex-lethal (Sxl) protein of Drosophila melanogaster regulates alternative splicing of the transformer (tra) messenger RNA precursor by binding to the tra polypyrimidine tract during the sex-determination process. The crystal structure has now been determined at 2.6u2009Å resolution of the complex formed between two tandemly arranged RNA-binding domains of the Sxl protein and a 12-nucleotide, single-stranded RNA derived from the tra polypyrimidine tract. The two RNA-binding domains have their β-sheet platforms facing each other to form a V-shaped cleft. The RNA is characteristically extended and bound in this cleft, where the UGUUUUUUU sequence is specifically recognized by the protein. This structure offers the first insight, to our knowledge, into how a protein binds specifically to a cognate RNA without any intramolecular base-pairing.


The EMBO Journal | 2012

Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice.

Saya Kagiwada; Kazuki Kurimoto; Takayuki Hirota; Masashi Yamaji; Mitinori Saitou

Genome‐wide DNA demethylation, including the erasure of genome imprints, in primordial germ cells (PGCs) is a critical first step to creating a totipotent epigenome in the germ line. We show here that, contrary to the prevailing model emphasizing active DNA demethylation, imprint erasure in mouse PGCs occurs in a manner largely consistent with replication‐coupled passive DNA demethylation: PGCs erase imprints during their rapid cycling with little de novo or maintenance DNA methylation potential and no apparent major chromatin alterations. Our findings necessitate the re‐evaluation of and provide novel insights into the mechanism of genome‐wide DNA demethylation in PGCs.


Nature | 2013

Induction of mouse germ-cell fate by transcription factors in vitro.

Fumio Nakaki; Katsuhiko Hayashi; Hiroshi Ohta; Kazuki Kurimoto; Yukihiro Yabuta; Mitinori Saitou

The germ-cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have previously demonstrated that, by using cytokines, embryonic stem cells and induced pluripotent stem cells can be induced into epiblast-like cells (EpiLCs) and then into primordial germ cell (PGC)-like cells with the capacity for both spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ-cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous overexpression of three transcription factors, Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2γ), directs EpiLCs, but not embryonic stem cells, swiftly and efficiently into a PGC state. Notably, Prdm14 alone, but not Blimp1 or Tfap2c, suffices for the induction of the PGC state in EpiLCs. The transcription-factor-induced PGC state, irrespective of the transcription factors used, reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC or PGC-like-cell specification by cytokines including bone morphogenetic protein 4. Notably, the transcription-factor-induced PGC-like cells contribute to spermatogenesis and fertile offspring. Our findings provide a new insight into the transcriptional logic for PGC specification, and create a foundation for the transcription-factor-based reconstitution and regulation of mammalian gametogenesis.


Nature Cell Biology | 2014

Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages

Yusuke Ohnishi; Wolfgang Huber; Akiko Tsumura; Minjung Kang; Panagiotis Xenopoulos; Kazuki Kurimoto; Andrzej K. Oleś; Marcos J. Araúzo-Bravo; Mitinori Saitou; Anna-Katerina Hadjantonakis; Takashi Hiiragi

It is now recognized that extensive expression heterogeneities among cells precede the emergence of lineages in the early mammalian embryo. To establish a map of pluripotent epiblast (EPI) versus primitive endoderm (PrE) lineage segregation within the inner cell mass (ICM) of the mouse blastocyst, we characterized the gene expression profiles of individual ICM cells. Clustering analysis of the transcriptomes of 66 cells demonstrated that initially they are non-distinguishable. Early in the segregation, lineage-specific marker expression exhibited no apparent correlation, and a hierarchical relationship was established only in the late blastocyst. Fgf4 exhibited a bimodal expression at the earliest stage analysed, and in its absence, the differentiation of PrE and EPI was halted, indicating that Fgf4 drives, and is required for, ICM lineage segregation. These data lead us to propose a model where stochastic cell-to-cell expression heterogeneity followed by signal reinforcement underlies ICM lineage segregation by antagonistically separating equivalent cells.


Cell Stem Cell | 2015

Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells.

Kotaro Sasaki; Shihori Yokobayashi; Tomonori Nakamura; Ikuhiro Okamoto; Yukihiro Yabuta; Kazuki Kurimoto; Hiroshi Ohta; Yoshinobu Moritoki; Chizuru Iwatani; Hideaki Tsuchiya; Shinichiro Nakamura; Kiyotoshi Sekiguchi; Tetsushi Sakuma; Takashi Yamamoto; Takahide Mori; Knut Woltjen; Masato Nakagawa; Takuya Yamamoto; Kazutoshi Takahashi; Shinya Yamanaka; Mitinori Saitou

Mechanisms underlying human germ cell development are unclear, partly due to difficulties in studying human embryos and lack of suitable experimental systems. Here, we show that human induced pluripotent stem cells (hiPSCs) differentiate into incipient mesoderm-like cells (iMeLCs), which robustly generate human primordial germ cell-like cells (hPGCLCs) that can be purified using the surface markers EpCAM and INTEGRINα6. The transcriptomes of hPGCLCs and primordial germ cells (PGCs) isolated from non-human primates are similar, and although specification of hPGCLCs and mouse PGCs rely on similar signaling pathways, hPGCLC specification transcriptionally activates germline fate without transiently inducing eminent somatic programs. This includes genes important for naive pluripotency and repression of key epigenetic modifiers, concomitant with epigenetic reprogramming. Accordingly, BLIMP1, which represses somatic programs in mice, activates and stabilizes a germline transcriptional circuit and represses a default neuronal differentiation program. Together, these findings provide a foundation for understanding and reconstituting human germ cell development in vitro.


Developmental Cell | 2013

A Mesodermal Factor, T, Specifies Mouse Germ Cell Fate by Directly Activating Germline Determinants

Shinya Aramaki; Katsuhiko Hayashi; Kazuki Kurimoto; Hiroshi Ohta; Yukihiro Yabuta; Hiroko Iwanari; Yasuhiro Mochizuki; Takao Hamakubo; Yuki Kato; Katsuhiko Shirahige; Mitinori Saitou

Germ cells ensure reproduction and heredity. In mice, primordial germ cells (PGCs), the precursors for spermatozoa and oocytes, are induced in pluripotent epiblast by BMP4 and WNT3, yet the underlying mechanism remains unclear. Here, using an in vitro PGC specification system, we show that WNT3 induces many transcription factors associated with mesoderm in epiblast-like cells through β-CATENIN. Among these, T (BRACHYURY), a classical and conserved mesodermal factor, was essential for robust activation of Blimp1 and Prdm14, two of the germline determinants. T, but not SMAD1 or TCF1, binds distinct regulatory elements of both Blimp1 and Prdm14 and directly upregulates these genes, delineating the downstream PGC program. Without BMP4, a program induced by WNT3 prevents T from activating Blimp1 and Prdm14, demonstrating a permissive role of BMP4 in PGC specification. These findings establish the key signaling mechanism for, and a fundamental role of a mesodermal factor in, mammalian PGC specification.


Cell Stem Cell | 2015

Quantitative Dynamics of Chromatin Remodeling during Germ Cell Specification from Mouse Embryonic Stem Cells

Kazuki Kurimoto; Yukihiro Yabuta; Katsuhiko Hayashi; Hiroshi Ohta; Hiroshi Kiyonari; Tadahiro Mitani; Yoshinobu Moritoki; Kenjiro Kohri; Hiroshi Kimura; Takuya Yamamoto; Yuki Katou; Katsuhiko Shirahige; Mitinori Saitou

Germ cell specification is accompanied by epigenetic remodeling, the scale and specificity of whichxa0are unclear. Here, we quantitatively delineate chromatin dynamics during induction of mouse embryonic stem cells (ESCs) to epiblast-like cells (EpiLCs) and from there into primordial germ cell-like cells (PGCLCs), revealing large-scale reorganization of chromatin signatures including H3K27me3 and H3K9me2 patterns. EpiLCs contain abundant bivalent gene promoters characterized by low H3K27me3, indicating a state primed for differentiation. PGCLCs initially lose H3K4me3 from many bivalent genes but subsequently regain this mark with concomitant upregulation of H3K27me3, particularly at developmental regulatory genes. PGCLCs progressively lose H3K9me2, including at lamina-associated perinuclear heterochromatin, resulting in changes in nuclear architecture. T recruits H3K27ac to activate BLIMP1 and early mesodermal programs during PGCLC specification, which is followed by BLIMP1-mediated repression of a broad range of targets, possibly through recruitment and spreading of H3K27me3. These findings provide a foundation for reconstructing regulatory networks of the germline epigenome.


Nucleic Acids Research | 2015

SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression

Tomonori Nakamura; Yukihiro Yabuta; Ikuhiro Okamoto; Shinya Aramaki; Shihori Yokobayashi; Kazuki Kurimoto; Kiyotoshi Sekiguchi; Masato Nakagawa; Takuya Yamamoto; Mitinori Saitou

Abstract Single-cell mRNA sequencing (RNA-seq) methods have undergone rapid development in recent years, and transcriptome analysis of relevant cell populations at single-cell resolution has become a key research area of biomedical sciences. We here present single-cell mRNA 3-prime end sequencing (SC3-seq), a practical methodology based on PCR amplification followed by 3-prime-end enrichment for highly quantitative, parallel and cost-effective measurement of gene expression in single cells. The SC3-seq allows excellent quantitative measurement of mRNAs ranging from the 10,000-cell to 1-cell level, and accordingly, allows an accurate estimate of the transcript levels by a regression of the read counts of spike-in RNAs with defined copy numbers. The SC3-seq has clear advantages over other typical single-cell RNA-seq methodologies for the quantitative measurement of transcript levels and at a sequence depth required for the saturation of transcript detection. The SC3-seq distinguishes four distinct cell types in the peri-implantation mouse blastocysts. Furthermore, the SC3-seq reveals the heterogeneity in human-induced pluripotent stem cells (hiPSCs) cultured under on-feeder as well as feeder-free conditions, demonstrating a more homogeneous property of the feeder-free hiPSCs. We propose that SC3-seq might be used as a powerful strategy for single-cell transcriptome analysis in a broad range of investigations in biomedical sciences.


Developmental Cell | 2014

Paternal Nucleosomes: Are They Retained in Developmental Promoters or Gene Deserts?

Mitinori Saitou; Kazuki Kurimoto

Nucleosomes retained in spermatozoa may influence development and epigenetic inheritance. In this issue of Developmental Cell, Samans etxa0al. (2014) and Carone etxa0al. (2014) provide evidence for the predominant retention of sperm nucleosomes in gene deserts, necessitating a reevaluation of the prevailing notion claiming their enrichment over developmental promoters.

Collaboration


Dive into the Kazuki Kurimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge