Kazuya Nagaishi
Shizuoka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kazuya Nagaishi.
Geology | 2002
Tsuyoshi Ishikawa; Kazuya Nagaishi; Susumu Umino
The discovery of boninite, a typical high-MgO andesite, in the Oman ophiolite is reported. The boninites in the Oman ophiolite occur as lavas and dikes of the Alley volcanic sequence that overlie or crosscut the spreading-ridge-derived lavas (Geotimes volcanic sequence) and sheeted dikes. The phenocryst mineral assemblage and the major and trace element compositions observed for these boninites resemble those of the Izu-Mariana forearc boninites, indicating that the Alley boninites represent primitive melt generated by partial melting of hydrous peridotite. The occurrence of boninite provides strong thermal and chemical constraints on the formation of the Oman ophiolite that require hot, hydrous shallow mantle (>1250 °C at <30 km depth) to have underlain the proto-Oman ophiolite at the time of boninite generation. The initiation of subduction of the young, hot oceanic lithosphere (and obduction of the future Oman ophiolite) near the spreading ridge and the resultant melting of the highly depleted, shallow-mantle wedge metasomatized by slab-derived fluid represent the most favorable mechanism for the genesis of the Alley boninites.
Journal of Analytical Atomic Spectrometry | 2011
Tsuyoshi Ishikawa; Kazuya Nagaishi
We present a methodology for the precise and accurate analysis of boron isotope ratios (11B/10B) by positive thermal ionization mass spectrometry (P-TIMS) using Cs2BO2+ ions. Samples in the form of caesium borate were loaded onto Ta filaments together with graphite and mannitol. The addition of mannitol to the samples is essential to suppress boron volatilization during acid treatment of the samples but is known to lower the performance of P-TIMS. Therefore, the prepared filaments were preheated in an oven at 240 °C to eliminate the mannitol thus stabilizing the chemical species of boron on the filament and increasing the ionization efficiency of Cs2BO2+, which enabled high-precision isotopic analysis of boron with small sample sizes. Analyses of NIST SRM 951 standard showed external reproducibility (2RSD) better than ±0.1‰ for 50–100 ng B and ±0.2‰ for 10 ng B. Ultrafiltration followed by cation- and anion-exchange chromatography was used to chemically separate boron from natural samples. Analyses of coral standard GSJ JCp-1 and seawater standard IRMM BCR-403 gave average δ11B values of +24.25 ± 0.08‰ and +39.58 ± 0.11‰ (2SD), respectively. The P-TIMS method developed in this study is applicable to a wide field of boron isotopic research that requires high precision and accuracy, including paleo-pH studies using marine carbonate samples.
Geodiversitas | 2012
Hideko Takayanagi; Yasufumi Iryu; Motoyoshi Oda; Tokiyuki Sato; Shun Chiyonobu; Akira Nishimura; Tsutomu Nakazawa; Tsuyoshi Ishikawa; Kazuya Nagaishi
ABSTRACT The lithology of Cretaceous to Pleistocene shallow-water carbonates, which were collected from 29 sites on 24 submerged seamounts in the northwestern Pacific Ocean using the Deep-sea Boring Machine System, are described. The shallow-water carbonate deposits examined in the present study can be roughly divided into three types based on their composition: Cretaceous, Eocene (to lowest Oligocene?), and Oligocene to Pleistocene. The Cretaceous type is characterized by an abundance of molluscs (including rudists), smaller foraminifers, microencrusters, non-skeletal grains (e.g., peloids, cortoids, and intraclasts), and microbial sediments. Most components have been micritized and possess thick micrite envelopes. The Eocene type is characterized by the dominance of larger foraminifers, Halimeda spp., nongeniculate and geniculate coralline algae, bryozoans, and dasycladacean algae. Scleractinian corals are very minor components. The Oligocene to Pleistocene type is similar in composition to the Eocene type, but it differs from the latter by the abundant occurrence of scleractinian corals and nongeniculate coralline algae. Corals, nongeniculate coralline algae, and Halimeda spp., which precipitate carbonates within closed to semi-closed spaces in and around their bodies (intra-tissue), are major components of the Eocene and Oligocene to Pleistocene types. In contrast, the Cretaceous-type sediments contain relatively more carbonates of extra-tissue origin (i.e. carbonates deposited in relatively open spaces around the bodies of organisms, such as rudists, as well as microbialite and ooids) than the Eocene and Oligocene to Pleistocene types. The changes in the major constituents of the carbonate factory depend on local environments, such as nutrient availability, as well as a global factor: seawater chemistry in the surface waters. Temporal variations in the abundance of the shallow-water carbonates on the examined seamounts suggest that carbonate accumulation was not necessarily controlled by climatic conditions; instead, it was related to the volcanism and tectonics that served as the foundations for reef/carbonate-platform formation.
Analytical Sciences | 2018
Masaharu Tanimizu; Kazuya Nagaishi; Tsuyoshi Ishikawa
We developed a method for rapid and precise determination of B isotope ratios by MC-ICP-MS through an optimization of washout method, mass-discrimination correction and chemical separation. Resultant reproducibility of δ11B values was ±0.4‰ (2 × SD) when a simple standard-sample bracketing technique was used, and it was improved to be better than ±0.2‰ by a mass discrimination correction with a 7Li/6Li isotopic reference. A mixed solution, which consists of HNO3-HF-mannitol, allowed a rapid washout of B memory in the sample introduction line. The validation of this technique to a wide range of δ11B value and various B signal intensities was confirmed from a series of B reference solutions with δ11B values of -20 to +40‰ and 25 to 125 ng/g B. Analyses of seawater standard (BCR-403) and carbonate standard (JCp-1) with sample sizes of less than 50 ng B gave δ11B values consistent with those determined by TIMS as Cs2BO2+. The simple and high-precision technique developed here is applicable to various types of commercially supplied multiple collector ICP mass spectrometers without any modification of the sample introduction system from their original instrumental setting.
Nature Geoscience | 2008
Tsuyoshi Ishikawa; Masaharu Tanimizu; Kazuya Nagaishi; Jun Matsuoka; Osamu Tadai; Masumi Sakaguchi; Tetsuro Hirono; Toshiaki Mishima; Wataru Tanikawa; Weiren Lin; Hiroyuki Kikuta; Wonn Soh; Sheng-Rong Song
Earth and Planetary Science Letters | 2005
Tsuyoshi Ishikawa; Shiori Fujisawa; Kazuya Nagaishi; Toshiaki Masuda
Geochimica et Cosmochimica Acta | 2012
Kyoko Yamaoka; Tsuyoshi Ishikawa; Osamu Matsubaya; Daizo Ishiyama; Kazuya Nagaishi; Yuko Hiroyasu; Hitoshi Chiba; Hodaka Kawahata
Earth and Planetary Science Letters | 2015
Yoshiro Nishio; Akira Ijiri; Tomohiro Toki; Yuki Morono; Masaharu Tanimizu; Kazuya Nagaishi; Fumio Inagaki
Geochemical Journal | 2009
Kazuya Nagaishi; Tsuyoshi Ishikawa
Geochemical Journal | 2003
Tsuyoshi Ishikawa; Kenji Sugimoto; Kazuya Nagaishi