Kedan Lin
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kedan Lin.
Bioconjugate Chemistry | 2011
C. Andrew Boswell; Eduardo E. Mundo; Crystal Zhang; Daniela Bumbaca; Nicole R. Valle; Katherine R. Kozak; Aimee Fourie; Josefa Chuh; Neelima Koppada; Ola Saad; Herman S. Gill; Ben-Quan Shen; Bonnee Rubinfeld; Jay Tibbitts; Surinder Kaur; Frank-Peter Theil; Paul J. Fielder; Leslie A. Khawli; Kedan Lin
Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ∼45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.
Pharmaceutical Research | 2012
Kedan Lin; Jay Tibbitts
Antibody drug conjugates (ADCs) are a class of therapeutics that combine the target specificity of an antibody with the potency of a chemotherapeutic. This therapeutic strategy can significantly expand the therapeutic index of a chemotherapeutic by minimizing the systemic exposure and associated toxicity of the chemotherapeutic agent, while simultaneously maximizing the delivery of the chemotherapeutic to the target. The abundance of antibody targets, coupled with advances in antibody engineering, conjugation chemistry, and examples of early clinical success, have stimulated interest in developing ADCs. However, developing and optimizing the highly complex components of ADCs remain challenging. Understanding the pharmacokinetics (PK) and consequently the pharmacokinetic-pharmacodynamic (PKPD) properties of ADCs is critical for their successful development. This review discusses the PK properties of ADCs, with a focus on ADC-specific characteristics, including molecular heterogeneity, in vivo processing, and the implications of multiple analytes. The disposition of ADCs and the utility of PKPD modeling are discussed in the context of providing guidance to assist in the successful development of these complex molecules.
Bioanalysis | 2013
Keyang Xu; Luna Liu; Randall Dere; Elaine Mai; Rebecca Erickson; Angela Hendricks; Kedan Lin; Jagath R. Junutula; Surinder Kaur
BACKGROUND Antibody-drug conjugates (ADCs) are a new class of cancer therapeutics that deliver potent cytotoxins specifically to tumors to minimize systemic toxicity. However, undesirable release of covalently linked drugs in circulation can affect safety and efficacy. The objective of this manuscript was to propose and assess the assays that allow for the characterization of the drug deconjugation in plasma/serum. RESULTS ADCs of three main drug conjugation platforms, linked via lysine, site-specific engineered cysteine or reduced interchain disulfide cysteine residues, were analyzed using affinity capture for sample enrichment coupled with LC-MS or hydrophobic interaction chromatography-UV for detection. These novel approaches enabled measurement of the relative abundance of individual ADC species with different drug-to-antibody ratios, while maintaining their structural integrity. CONCLUSION The characterization data generated by affinity capture LC-MS or hydrophobic interaction chromatography-UV provided critical mechanistic insights into understanding the stability and bioactivity of ADCs in vivo, and also helped the development of appropriate quantitative ELISAs.
British Journal of Pharmacology | 2013
C. Andrew Boswell; Eduardo E. Mundo; Ron Firestein; Crystal Zhang; Weiguang Mao; Herman S. Gill; Cynthia Young; Nina Ljumanovic; Shannon Stainton; Sheila Ulufatu; Aimee Fourie; Katherine R. Kozak; Reina N. Fuji; Paul Polakis; Leslie A. Khawli; Kedan Lin
The success of antibody‐drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target‐mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen‐independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target‐mediated clearance.
The Journal of Nuclear Medicine | 2012
C. Andrew Boswell; Eduardo E. Mundo; Crystal Zhang; Shannon Stainton; Shang-Fan Yu; Jennifer A. Lacap; Weiguang Mao; Katherine R. Kozak; Aimee Fourie; Paul Polakis; Leslie A. Khawli; Kedan Lin
TENB2, also known as tomoregulin or transmembrane protein with epidermal growth factor–like and 2 follistatin-like domains, is a transmembrane proteoglycan overexpressed in human prostate tumors. This protein is a promising target for antimitotic monomethyl auristatin E (MMAE)–based antibody–drug conjugate (ADC) therapy. Nonlinear pharmacokinetics in normal mice suggested that antigen expression in normal tissues may contribute to targeted mediated disposition. We evaluated a predosing strategy with unconjugated antibody to block ADC uptake in target-expressing tissues in a mouse model while striving to preserve tumor uptake and efficacy. Methods: Unconjugated, unlabeled antibody was preadministered to mice bearing the TENB2-expressing human prostate explant model, LuCaP 77, followed by a single administration of 111In-labeled anti-TENB2-MMAE for biodistribution and SPECT/CT studies. A tumor-growth-inhibition study was conducted to determine the pharmacodynamic consequences of predosing. Results: Preadministration of anti-TENB2 at 1 mg/kg significantly increased blood exposure of the radiolabeled ADC and reduced intestinal, hepatic, and splenic uptake while not affecting tumor accretion. Similar tumor-to-heart ratios were measured by SPECT/CT at 24 h with and without the predose. Consistent with this, the preadministration of 0.75 mg/kg did not interfere with efficacy in a tumor-growth study dosed at 0.75 mg or 2.5 mg of ADC per kilogram. Conclusion: Overall, the potential to mask peripheral, nontumor antigen uptake while preserving tumor uptake and efficacy could ameliorate toxicity and may significantly affect future dosing strategies for ADCs.
Pharmaceutical Research | 2015
Siddharth Sukumaran; Kapil Gadkar; Crystal Zhang; Sunil Bhakta; Luna Liu; Keyang Xu; Helga Raab; Shang-Fan Yu; Elaine Mai; Aimee Fourie-O’Donohue; Katherine R. Kozak; Saroja Ramanujan; Jagath R. Junutula; Kedan Lin
ABSTRACTPurposeTHIOMAB™ drug conjugates (TDCs) with engineered cysteine residues allow site-specific drug conjugation and defined Drug-to-Antibody Ratios (DAR). In order to help elucidate the impact of drug-loading, conjugation site, and subsequent deconjugation on pharmacokinetics and efficacy, we have developed an integrated mathematical model to mechanistically characterize pharmacokinetic behavior and preclinical efficacy of MMAE conjugated TDCs with different DARs. General applicability of the model structure was evaluated with two different TDCs.MethodPharmacokinetics studies were conducted for unconjugated antibody and purified TDCs with DAR-1, 2 and 4 for trastuzumab TDC and Anti-STEAP1 TDC in mice. Total antibody concentrations and individual DAR fractions were measured. Efficacy studies were performed in tumor-bearing mice.ResultsAn integrated model consisting of distinct DAR species (DAR0-4), each described by a two-compartment model was able to capture the experimental data well. Time series measurements of each Individual DAR species allowed for the incorporation of site-specific drug loss through deconjugation and the results suggest a higher deconjugation rate from heavy chain site HC-A114C than the light chain site LC-V205C. Total antibody concentrations showed multi-exponential decline, with a higher clearance associated with higher DAR species. The experimentally observed effects of TDC on tumor growth kinetics were successfully described by linking pharmacokinetic profiles to DAR-dependent killing of tumor cells.ConclusionResults from the integrated model evaluated with two different TDCs highlight the impact of DAR and site of conjugation on pharmacokinetics and efficacy. The model can be used to guide future drug optimization and in-vivo studies.
Clinical Cancer Research | 2015
Kedan Lin; Bonnee Rubinfeld; Crystal Zhang; Ron Firestein; Eric Harstad; Leslie Roth; Siao Ping Tsai; Melissa Schutten; Keyang Xu; Maria Hristopoulos; Paul Polakis
Purpose: Antibody–drug conjugates (ADC) selectively deliver a cytotoxic drug to cells expressing an accessible antigenic target. Here, we have appended monomethyl auristatin E (MMAE) to an antibody recognizing the SLC34A2 gene product NaPi2b, the type II sodium–phosphate cotransporter, which is highly expressed on tumor surfaces of the lung, ovary, and thyroid as well as on normal lung pneumocytes. This study evaluated its efficacy and safety in preclinical studies. Experimental Design: The efficacy of anti-NaPi2b ADC was evaluated in mouse ovarian and non–small cell lung cancer (NSCLC) tumor xenograft models, and its toxicity was assessed in rats and cynomolgus monkeys. Results: We show here that an anti-NaPi2b ADC is effective in mouse ovarian and NSCLC tumor xenograft models and well-tolerated in rats and cynomolgus monkeys at levels in excess of therapeutic doses. Despite high levels of expression in normal lung of non-human primate, the cross-reactive ADC exhibited an acceptable safety profile with a dose-limiting toxicity unrelated to normal tissue target expression. The nonproliferative nature of normal pneumocytes, together with the antiproliferative mechanism of MMAE, likely mitigates the potential liability of this normal tissue expression. Conclusions: Overall, our preclinical results suggest that the ADC targeting NaPi2b provides an effective new therapy for the treatment of NSCLC and ovarian cancer and is currently undergoing clinical developments. Clin Cancer Res; 21(22); 5139–50. ©2015 AACR.
Blood | 2017
Steven R. Leong; Siddharth Sukumaran; Maria Hristopoulos; Klara Totpal; Shannon Stainton; Elizabeth Lu; Alfred Wong; Lucinda Tam; Robert J. Newman; Brian R. Vuillemenot; Diego Ellerman; Chen Gu; Mary Mathieu; Mark S. Dennis; Allen Nguyen; Bing Zheng; Crystal Zhang; Genee Lee; Yu-Waye Chu; Rodney A. Prell; Kedan Lin; Steven T. Laing; Andrew G. Polson
Acute myeloid leukemia (AML) is a major unmet medical need. Most patients have poor long-term survival, and treatment has not significantly changed in 40 years. Recently, bispecific antibodies that redirect the cytotoxic activity of effector T cells by binding to CD3, the signaling component of the T-cell receptor, and a tumor target have shown clinical activity. Notably, blinatumomab is approved to treat relapsed/refractory acute lymphoid leukemia. Here we describe the design, discovery, pharmacologic activity, pharmacokinetics, and safety of a CD3 T cell-dependent bispecific (TDB) full-length human IgG1 therapeutic antibody targeting CLL-1 that could potentially be used in humans to treat AML. CLL-1 is prevalent in AML and, unlike other targets such as CD33 and CD123, is not expressed on hematopoietic stem cells providing potential hematopoietic recovery. We selected a high-affinity monkey cross-reactive anti-CLL-1 arm and tested several anti-CD3 arms that varied in affinity, and determined that the high-affinity CD3 arms were up to 100-fold more potent in vitro. However, in mouse models, the efficacy differences were less pronounced, probably because of prolonged exposure to TDB found with lower-affinity CD3 TDBs. In monkeys, assessment of safety and target cell depletion by the high- and low-affinity TDBs revealed that only the low-affinity CD3/CLL1 TDB was well tolerated and able to deplete target cells. Our data suggest that an appropriately engineered CLL-1 TDB could be effective in the treatment of AML.
Methods of Molecular Biology | 2013
Kedan Lin; Jay Tibbitts; Ben-Quan Shen
Pharmacokinetic and absorption, distribution, metabolism, and excretion (ADME) characterization of antibody-drug conjugates (ADCs) reflects the dynamic interactions between the biological system and ADC, and provides critical assessments in lead selection, optimization, and clinical development. Understanding the pharmacokinetics (PK), ADME properties and consequently the pharmacokinetic-pharmacodynamic properties of ADCs is critical for their successful development. This chapter discusses the PK properties of ADCs, types of PK and ADME studies in supporting different stages of development, general design of PK/ADME studies with a focus on ADC-specific characteristics, and interpretation of PK parameters.
mAbs | 2017
Michael Dillon; Yiyuan Yin; Jianhui Zhou; Luke McCarty; Diego Ellerman; Dionysos Slaga; Teemu T. Junttila; Guanghui Han; Wendy Sandoval; Meric Ovacik; Kedan Lin; Zhilan Hu; Amy Shen; Jacob E. Corn; Christoph Spiess; Paul Carter
ABSTRACT Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development.