Siao Ping Tsai
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siao Ping Tsai.
Nature Biotechnology | 2008
Jagath R. Junutula; Helga Raab; Suzanna Clark; Sunil Bhakta; Douglas D. Leipold; Sylvia Weir; Yvonne Chen; Michelle Simpson; Siao Ping Tsai; Mark S. Dennis; Yanmei Lu; Y. Gloria Meng; Carl Ng; Jihong Yang; Chien C Lee; Eileen T. Duenas; Jeffrey Gorrell; Viswanatham Katta; Amy Kim; Kevin McDorman; Kelly Flagella; Rayna Venook; Sarajane Ross; Susan D. Spencer; Wai Lee Wong; Henry B. Lowman; Richard Vandlen; Mark X. Sliwkowski; Richard H. Scheller; Paul Polakis
Antibody-drug conjugates enhance the antitumor effects of antibodies and reduce adverse systemic effects of potent cytotoxic drugs. However, conventional drug conjugation strategies yield heterogenous conjugates with relatively narrow therapeutic index (maximum tolerated dose/curative dose). Using leads from our previously described phage display–based method to predict suitable conjugation sites, we engineered cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not perturb immunoglobulin folding and assembly, or alter antigen binding. When conjugated to monomethyl auristatin E, an antibody against the ovarian cancer antigen MUC16 is as efficacious as a conventional conjugate in mouse xenograft models. Moreover, it is tolerated at higher doses in rats and cynomolgus monkeys than the same conjugate prepared by conventional approaches. The favorable in vivo properties of the near-homogenous composition of this conjugate suggest that our strategy offers a general approach to retaining the antitumor efficacy of antibody-drug conjugates, while minimizing their systemic toxicity.
Molecular Cancer Therapeutics | 2008
Yonglei Shang; Yifan Mao; Jennifer Batson; Suzie J. Scales; Gail Lewis Phillips; Mark R. Lackner; Klara Totpal; Simon C. Williams; Jihong Yang; Zhijun Tang; Zora Modrusan; Christine Tan; Wei-Ching Liang; Siao Ping Tsai; Alexander N. Vanderbilt; Kenji Kozuka; Klaus P. Hoeflich; Janet Tien; Sarajane Ross; Congfen Li; Sang Hoon Lee; An Song; Yan Wu; Jean-Philippe Stephan; Avi Ashkenazi; Jiping Zha
The insulin-like growth factor (IGF) system consists of two ligands (IGF-I and IGF-II), which both signal through IGF-I receptor (IGF-IR) to stimulate proliferation and inhibit apoptosis, with activity contributing to malignant growth of many types of human cancers. We have developed a humanized, affinity-matured anti-human IGF-IR monoclonal antibody (h10H5), which binds with high affinity and specificity to the extracellular domain. h10H5 inhibits IGF-IR-mediated signaling by blocking IGF-I and IGF-II binding and by inducing cell surface receptor down-regulation via internalization and degradation, with the extracellular and intracellular domains of IGF-IR being differentially affected by the proteasomal and lysosomal inhibitors. In vitro, h10H5 exhibits antiproliferative effects on cancer cell lines. In vivo, h10H5 shows single-agent antitumor efficacy in human SK-N-AS neuroblastoma and SW527 breast cancer xenograft models and even greater efficacy in combination with the chemotherapeutic agent docetaxel or an anti–vascular endothelial growth factor antibody. Antitumor activity of h10H5 is associated with decreased AKT activation and glucose uptake and a 316-gene transcription profile with significant changes involving DNA metabolic and cell cycle machineries. These data support the clinical testing of h10H5 as a biotherapeutic for IGF-IR-dependent human tumors and furthermore illustrate a new method of monitoring its activity noninvasively in vivo via 2-fluoro-2-deoxy-d-glucose-positron emission tomography imaging. [Mol Cancer Ther 2008;7(9):2599–608]
Clinical Cancer Research | 2015
Kedan Lin; Bonnee Rubinfeld; Crystal Zhang; Ron Firestein; Eric Harstad; Leslie Roth; Siao Ping Tsai; Melissa Schutten; Keyang Xu; Maria Hristopoulos; Paul Polakis
Purpose: Antibody–drug conjugates (ADC) selectively deliver a cytotoxic drug to cells expressing an accessible antigenic target. Here, we have appended monomethyl auristatin E (MMAE) to an antibody recognizing the SLC34A2 gene product NaPi2b, the type II sodium–phosphate cotransporter, which is highly expressed on tumor surfaces of the lung, ovary, and thyroid as well as on normal lung pneumocytes. This study evaluated its efficacy and safety in preclinical studies. Experimental Design: The efficacy of anti-NaPi2b ADC was evaluated in mouse ovarian and non–small cell lung cancer (NSCLC) tumor xenograft models, and its toxicity was assessed in rats and cynomolgus monkeys. Results: We show here that an anti-NaPi2b ADC is effective in mouse ovarian and NSCLC tumor xenograft models and well-tolerated in rats and cynomolgus monkeys at levels in excess of therapeutic doses. Despite high levels of expression in normal lung of non-human primate, the cross-reactive ADC exhibited an acceptable safety profile with a dose-limiting toxicity unrelated to normal tissue target expression. The nonproliferative nature of normal pneumocytes, together with the antiproliferative mechanism of MMAE, likely mitigates the potential liability of this normal tissue expression. Conclusions: Overall, our preclinical results suggest that the ADC targeting NaPi2b provides an effective new therapy for the treatment of NSCLC and ovarian cancer and is currently undergoing clinical developments. Clin Cancer Res; 21(22); 5139–50. ©2015 AACR.
Drug Metabolism and Disposition | 2010
Cinthia V. Pastuskovas; William Mallet; Suzanna Clark; Margaret Kenrick; Mohammed Majidy; Michelle G. Schweiger; Marjie Van Hoy; Siao Ping Tsai; Gregory L. Bennett; Ben-Quan Shen; Sarajane Ross; Paul J. Fielder; Leslie A. Khawli; Jay Tibbitts
3A5 is a novel antibody that binds repeated epitopes within CA125, an ovarian tumor antigen that is shed into the circulation. Binding to shed antigen may limit the effectiveness of therapeutic antibodies because of unproductive immune complex (IC) formation and/or altered antibody distribution. To evaluate this possibility, we characterized the impact of shed CA125 on the in vivo distribution of 3A5. In vitro, 3A5 and CA125 were found to form ICs in a concentration-dependent manner. This phenomenon was then evaluated in vivo using quantitative whole-body autoradiography to assess the tissue distribution of 125I-3A5 in an orthotopic OVCAR-3 tumor mouse model at different stages of tumor burden. Low doses of 3A5 (75 μg/kg) and pathophysiological levels of shed CA125 led to the formation of ICs in vivo that were rapidly distributed to the liver. Under these conditions, increased clearance of 3A5 from normal tissues was observed in mice bearing CA125-expressing tumors. Of importance, despite IC formation, 3A5 uptake by tumors was sustained over time. At a therapeutically relevant dose of 3A5 (3.5 mg/kg), IC formation was undetectable and distribution to normal tissues followed that of blood. In contrast, increased levels of radioactivity were observed in the tumors. These data demonstrate that CA125 and 3A5 do form ICs in vivo and that the liver is involved in their uptake. However, at therapeutic doses of 3A5 and clinically relevant CA125 levels, IC formation consumes only a minor fraction of 3A5, and tumor targeting seems to be unaffected.
mAbs | 2014
Amrita V. Kamath; Victor Yip; Priyanka Gupta; C. Andrew Boswell; Daniela Bumbaca; Peter Haughney; Joni Castro; Siao Ping Tsai; Glenn Pacheco; Sarajane Ross; Minhong Yan; Lisa A. Damico-Beyer; Leslie A. Khawli; Ben-Quan Shen
Delta-like-4 ligand (DLL4) plays an important role in vascular development and is widely expressed on the vasculature of normal and tumor tissues. Anti-DLL4 is a humanized IgG1 monoclonal antibody against DLL4. The purpose of these studies was to characterize the pharmacokinetics (PK), tissue distribution, and anti-tumor efficacy of anti-DLL4 in mice over a range of doses. PK and tissue distribution of anti-DLL4 were determined in athymic nude mice after administration of single intravenous (IV) doses. In the tissue distribution study, radiolabeled anti-DLL4 (mixture of 125Iodide and 111Indium) was administered in the presence of increasing amounts of unlabeled anti-DLL4. Dose ranging anti-DLL4 anti-tumor efficacy was evaluated in athymic nude mice bearing MV522 human lung tumor xenografts. Anti-DLL4 had nonlinear PK in mice with rapid serum clearance at low doses and slower clearance at higher doses suggesting the involvement of target mediated clearance. Consistent with the PK data, anti-DLL4 was shown to specifically distribute to several normal tissues known to express DLL4 including the lung and liver. Maximal efficacy in the xenograft model was seen at doses ≥ 10 mg/kg when tissue sinks were presumably saturated, consistent with the PK and tissue distribution profiles. These findings highlight the importance of mechanistic understanding of antibody disposition to enable dosing strategies for maximizing efficacy.
Bioconjugate Chemistry | 2018
Rachana Ohri; Sunil Bhakta; Aimee Fourie-O’Donohue; Josefa dela Cruz-Chuh; Siao Ping Tsai; Ryan Cook; Binqing Wei; Carl Ng; Athena W. Wong; Aaron B. Bos; Farzam Farahi; Jiten Bhakta; Thomas H. Pillow; Helga Raab; Richard Vandlen; Paul Polakis; Yichin Liu; Hans Erickson; Jagath R. Junutula; Katherine R. Kozak
THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.
Clinical Cancer Research | 2016
Jessica Couch; Gu Zhang; Joseph Beyer; Christina L.Zuch de Zafra; Priyanka Gupta; Amrita V. Kamath; Nicholas Lewin-Koh; Jacqueline M. Tarrant; Krishna P. Allamneni; Gary Cain; Sharon Yee; Sarajane Ross; Ryan Cook; Siao Ping Tsai; Jane Ruppel; John Ridgway; Maciej Paluch; Philip E. Hass; Jayme Franklin; Minhong Yan
Purpose: Although agents targeting Delta-like ligand 4 (DLL4) have shown great promise for angiogenesis-based cancer therapy, findings in recent studies have raised serious safety concerns. To further evaluate the potential for therapeutic targeting of the DLL4 pathway, we pursued a novel strategy to reduce toxicities related to DLL4 inhibition by modulating the pharmacokinetic (PK) properties of an anti-DLL4 antibody. Experimental Design: The F(ab′)2 fragment of anti-DLL4 antibody (anti-DLL4 F(ab′)2) was generated and assessed in efficacy and toxicity studies. Results: Anti-DLL4 F(ab′)2 enables greater control over the extent and duration of DLL4 inhibition, such that intermittent dosing of anti-DLL4 F(ab′)2 can maintain significant antitumor activity while markedly mitigating known toxicities associated with continuous pathway inhibition. Conclusions: PK modulation has potentially broad implications for development of antibody-based therapeutics. Our safety studies with anti-DLL4 F(ab′)2 also provide new evidence reinforcing the notion that the DLL4 pathway is extremely sensitive to pharmacologic perturbation, further underscoring the importance of exercising caution to safely harness this potent pathway in humans. Clin Cancer Res; 22(6); 1469–79. ©2015 AACR.
Scientific Reports | 2018
Sara L. Dominguez; Ganapati V. Hegde; Jesse E. Hanson; Hong Xiang; Danielle Mandikian; C. Andrew Boswell; Cecilia Chiu; Yan Wu; Siao Ping Tsai; Daniel Fleck; Martin Weber; Hai Ngu; Kimberly Scearce-Levie; Erica Jackson
Neuregulin 1 (NRG1) is required for development of the central and peripheral nervous system and regulates neurotransmission in the adult. NRG1 and the gene encoding its receptor, ERBB4, are risk genes for schizophrenia, although how alterations in these genes disrupt their function has not been fully established. Studies of knockout and transgenic mice have yielded conflicting results, with both gain and loss of function resulting in similar behavioral and electrophysiological phenotypes. Here, we used high affinity antibodies to NRG1 and ErbB4 to perturb the function of the endogenous proteins in adult mice. Treatment with NRG1 antibodies that block receptor binding caused behavioral alterations associated with schizophrenia, including, hyper-locomotion and impaired pre-pulse inhibition of startle (PPI). Electrophysiological analysis of brain slices from anti-NRG1 treated mice revealed reduced synaptic transmission and enhanced paired-pulse facilitation. In contrast, mice treated with more potent ErbB4 function blocking antibodies did not display behavioral alterations, suggesting a receptor independent mechanism of the anti-NRG1-induced phenotypes. We demonstrate that anti-NRG1 causes accumulation of the full-length transmembrane protein and increases phospho-cofilin levels, which has previously been linked to impaired synaptic transmission, indicating enhancement of non-canonical NRG1 signaling could mediate the CNS effects.
Journal of Medicinal Chemistry | 2017
Binqing Wei; Janet Gunzner-Toste; Hui Yao; Tao Wang; Jing Wang; Zijin Xu; Jinhua Chen; John S. Wai; Jim Nonomiya; Siao Ping Tsai; Josefa Chuh; Katherine R. Kozak; Yichin Liu; Shang-Fan Yu; Jeff Lau; Guangmin Li; Gail D. Phillips; Doug Leipold; Amrita Kamath; Dian Su; Keyang Xu; Charles Eigenbrot; Stefan Steinbacher; Rachana Ohri; Helga Raab; Leanna Staben; Guiling Zhao; John A. Flygare; Thomas H. Pillow; Vishal A. Verma
Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells. If the linker can be preferentially hydrolyzed by tumor-specific proteases, safety margin may improve. However, the use of peptide-based linkers limits our ability to modulate protease specificity. Here we report the structure-guided discovery of novel, nonpeptidic ADC linkers. We show that a cyclobutane-1,1-dicarboxamide-containing linker is hydrolyzed predominantly by cathepsin B while the valine-citrulline dipeptide linker is not. ADCs bearing the nonpeptidic linker are as efficacious and stable in vivo as those with the dipeptide linker. Our results strongly support the application of the peptidomimetic linker and present new opportunities for improving the selectivity of ADCs.
Bioconjugate Chemistry | 2018
Byoung-Chul Lee; Cecile Chalouni; Sophia Doll; Sam Nalle; Martine Darwish; Siao Ping Tsai; Katherine R. Kozak; Geoffrey Del-Rosario; Shang-Fan Yu; Hans Erickson; Richard Vandlen
Despite the recent success of antibody-drug conjugates (ADCs) in cancer therapy, a detailed understanding of their entry, trafficking, and metabolism in cancer cells is limited. To gain further insight into the activation mechanism of ADCs, we incorporated fluorescence resonance energy transfer (FRET) reporter groups into the linker connecting the antibody to the drug and studied various aspects of intracellular ADC processing mechanisms. When comparing the trafficking of the antibody-FRET drug conjugates in various different model cells, we found that the cellular background plays an important role in how the antigen-mediated antibody is processed. Certain tumor cells showed limited cytosolic transport of the payload despite efficient linker cleavage. Our FRET assay provides a facile and robust assessment of intracellular ADC activation that may have significant implications for the future development of ADCs.