Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keegan Cooke is active.

Publication


Featured researches published by Keegan Cooke.


Blood | 2010

Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia

Barbra Sasu; Keegan Cooke; Tara Arvedson; Plewa C; Ellison Ar; Sheng J; Aaron George Winters; Juan T; Li H; Begley Cg; Graham Molineux

Iron maldistribution has been implicated in multiple diseases, including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino acid peptide. Hepcidin is induced by inflammation, causes iron to be sequestered, and thus, potentially contributes to AI. Human hepcidin (hHepc) overexpression in mice caused an iron-deficient phenotype, including stunted growth, hair loss, and iron-deficient erythropoiesis. It also caused resistance to supraphysiologic levels of erythropoiesis-stimulating agent, supporting the hypothesis that hepcidin may influence response to treatment in AI. To explore the role of hepcidin in inflammatory anemia, a mouse AI model was developed with heat-killed Brucella abortus treatment. Suppression of hepcidin mRNA was a successful anemia treatment in this model. High-affinity antibodies specific for hHepc were generated, and hHepc knock-in mice were produced to enable antibody testing. Antibody treatment neutralized hHepc in vitro and in vivo and facilitated anemia treatment in hHepc knock-in mice with AI. These data indicate that antihepcidin antibodies may be an effective treatment for patients with inflammatory anemia. The ability to manipulate iron metabolism in vivo may also allow investigation of the role of iron in a number of other pathologic conditions.


Blood | 2013

A fully human anti-hepcidin antibody modulates iron metabolism in both mice and nonhuman primates

Keegan Cooke; Hinkle B; Salimi-Moosavi H; Ian Foltz; Chadwick Terence King; Rathanaswami P; Aaron George Winters; Steavenson S; Begley Cg; Graham Molineux; Barbra Sasu

Iron maldistribution has been implicated in the etiology of many diseases including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino-acid peptide. Hepcidin is induced by inflammation and causes iron to be sequestered within cells of the reticuloendothelial system, suppressing erythropoiesis and blunting the activity of erythropoiesis stimulating agents (ESAs). For this reason, neutralization of hepcidin has been proposed as a therapeutic treatment of AI. The aim of the current work was to generate fully human anti-hepcidin antibodies (Abs) as a potential human therapeutic for the treatment of AI and other iron maldistribution disorders. An enzyme-linked immunosorbent assay was established using these Abs to identify patients likely to benefit from either ESAs or anti-hepcidin agents. Using human hepcidin knock-in mice, the mechanism of action of the Abs was shown to be due to an increase in available serum iron leading to enhanced red cell hemoglobinization. One of the Abs, 12B9m, was validated in a mouse model of AI and demonstrated to modulate serum iron in cynomolgus monkeys. The 12B9m Ab was deemed to be an appropriate candidate for use as a potential therapeutic to treat AI in patients with kidney disease or cancer.


Blood | 2014

Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus

Sara Gardenghi; Tom M. Renaud; Alessandra Meloni; Carla Casu; Bart J. Crielaard; Laura M. Bystrom; Noa Greenberg-Kushnir; Barbra Sasu; Keegan Cooke; Stefano Rivella

Anemia of inflammation (AI) is commonly observed in chronic inflammatory states and may hinder patient recovery and survival. Induction of hepcidin, mediated by interleukin 6, leads to iron-restricted erythropoiesis and anemia. Several translational studies have been directed at neutralizing hepcidin overexpression as a therapeutic strategy against AI. However, additional hepcidin-independent mechanisms contribute to AI, which are likely mediated by a direct effect of inflammatory cytokines on erythropoiesis. In this study, we used wild-type, hepcidin knockout (Hamp-KO) and interleukin 6 knockout (IL-6-KO) mice as models of AI. AI was induced with heat-killed Brucella abortus (BA). The distinct roles of iron metabolism and inflammation triggered by interleukin 6 and hepcidin were investigated. BA-treated wild-type mice showed increased expression of hepcidin and inflammatory cytokines, as well as transitory suppression of erythropoiesis and shortened red blood cell lifespan, all of which contributed to the severe anemia of these mice. In contrast, BA-treated Hamp-KO or IL-6-KO mice showed milder anemia and faster recovery compared with normal mice. Moreover, they exhibited different patterns in the development and resolution of anemia, supporting the notion that interleukin 6 and hepcidin play distinct roles in modulating erythropoiesis in AI.


Journal of Immunology | 2013

IL-22 Regulates Iron Availability In Vivo through the Induction of Hepcidin

Carole L. Smith; Tara Arvedson; Keegan Cooke; Leslie J. Dickmann; Carla Forte; Hongyan Li; Kimberly Merriam; V. Kristina Perry; Linh Tran; James B. Rottman; Joseph R. Maxwell

Iron is a trace element important for the proper folding and function of various proteins. Physiological regulation of iron stores is of critical importance for RBC production and antimicrobial defense. Hepcidin is a key regulator of iron levels within the body. Under conditions of iron deficiency, hepcidin expression is reduced to promote increased iron uptake from the diet and release from cells, whereas during conditions of iron excess, induction of hepcidin restricts iron uptake and movement within the body. The cytokine IL-6 is well established as an important inducer of hepcidin. The presence of this cytokine during inflammatory states can induce hepcidin production, iron deficiency, and anemia. In this study, we show that IL-22 also influences hepcidin production in vivo. Injection of mice with exogenous mouse IgG1 Fc fused to the N terminus of mouse IL-22 (Fc–IL-22), an IL-22R agonist with prolonged and enhanced functional potency, induced hepcidin production, with a subsequent decrease in circulating serum iron and hemoglobin levels and a concomitant increase in iron accumulation within the spleen. This response was independent of IL-6 and was attenuated in the absence of the IL-22R–associated signaling kinase, Tyk2. Ab-mediated blockade of hepcidin partially reversed the effects on iron biology caused by IL-22R stimulation. Taken together, these data suggest that exogenous IL-22 regulates hepcidin production to physiologically influence iron usage.


Experimental Hematology | 2001

Novel erythropoiesis stimulating protein (darbepoetin alfa) alleviates anemia associated with chronic inflammatory disease in a rodent model

Marco A. Coccia; Keegan Cooke; Gregory B. Stoney; Jeanne Pistillo; Juan Del Castillo; Diane Duryea; John Tarpley; Graham Molineux

OBJECTIVE We developed a rodent model of noninfectious systemic inflammation to examine the pathogenesis of the associated anemia of chronic disorders (ACD), to evaluate the similarity of this ACD model to human ACD, and to evaluate the potential efficacy of novel erythropoiesis stimulating protein (darbepoetin alfa) as an ACD therapy. METHODS Lewis rats were immunized with peptidoglycan-polysaccharide polymers (PG-APS), the chronic inflammation and associated ACD were characterized, and the effects of darbepoetin alfa treatment on complete blood counts (CBC), red blood cell (RBC) indices, and iron metabolism were analyzed weekly. RESULTS Acutely inflamed rats had reduced peripheral blood (PB) RBC counts and hemoglobin (Hb) concentrations and increased reticulocyte counts. PB RBC numbers normalized during chronic inflammation, but RBC remained hypochromic and microcytic. Consequently, the rats remained chronically anemic. Anemic rats had fluctuating serum erythropoietin (EPO) concentrations, but mean EPO concentrations never varied significantly from baseline control levels. Histology of anemic rat spleen sections revealed reticuloendothelial siderosis. Total serum iron concentrations were chronically low. Peritoneal exudate cells (PEC) isolated from anemic rats and stimulated with PG-APS in vitro produced more interleukin (IL)-1alpha and interferon (IFN)-gamma, and significantly more tumor necrosis factor (TNF)-alpha and IL-10 than control cultures. Darbepoetin alfa restored Hb concentrations to baseline levels within 2 to 7 weeks, depending on dosage. A refined treatment strategy restored Hb to baseline and maintained those levels with reduced dosing. CONCLUSION ACD in this rodent model closely replicates human ACD. Darbepoetin alfa treatment reversed ACD in this model by increasing RBC production and RBC hemoglobinization while reducing siderosis and hypoferremia.


Clinical Cancer Research | 2017

Local Delivery of OncoVEXmGM-CSF Generates Systemic Antitumor Immune Responses Enhanced by Cytotoxic T-Lymphocyte–Associated Protein Blockade

Achim K. Moesta; Keegan Cooke; Julia Piasecki; Petia Mitchell; James B. Rottman; Karen Fitzgerald; Jinghui Zhan; Becky Yang; Tiep Le; Brian Belmontes; Oluwatayo Ikotun; Kim Merriam; Charles Glaus; Kenneth Ganley; David Cordover; Andrea M. Boden; Rafael Ponce; Courtney Beers; Pedro J. Beltran

Purpose: Talimogene laherparepvec, a new oncolytic immunotherapy, has been recently approved for the treatment of melanoma. Using a murine version of the virus, we characterized local and systemic antitumor immune responses driving efficacy in murine syngeneic models. Experimental Design: The activity of talimogene laherparepvec was characterized against melanoma cell lines using an in vitro viability assay. Efficacy of OncoVEXmGM-CSF (talimogene laherparepvec with the mouse granulocyte-macrophage colony-stimulating factor transgene) alone or in combination with checkpoint blockade was characterized in A20 and CT-26 contralateral murine tumor models. CD8+ depletion, adoptive T-cell transfers, and Enzyme-Linked ImmunoSpot assays were used to study the mechanism of action (MOA) of systemic immune responses. Results: Treatment with OncoVEXmGM-CSF cured all injected A20 tumors and half of contralateral tumors. Viral presence was limited to injected tumors and was not responsible for systemic efficacy. A significant increase in T cells (CD3+/CD8+) was observed in injected and contralateral tumors at 168 hours. Ex vivo analyses showed these cytotoxic T lymphocytes were tumor-specific. Increased neutrophils, monocytes, and chemokines were observed in injected tumors only. Importantly, depletion of CD8+ T cells abolished all systemic efficacy and significantly decreased local efficacy. In addition, immune cell transfer from OncoVEXmGM-CSF-cured mice significantly protected from tumor challenge. Finally, combination of OncoVEXmGM-CSF and checkpoint blockade resulted in increased tumor-specific CD8+ anti-AH1 T cells and systemic efficacy. Conclusions: The data support a dual MOA for OncoVEXmGM-CSF that involves direct oncolysis of injected tumors and activation of a CD8+-dependent systemic response that clears injected and contralateral tumors when combined with checkpoint inhibition. Clin Cancer Res; 23(20); 6190–202. ©2017 AACR.


ACS Medicinal Chemistry Letters | 2015

Oxopyrido[2,3-d]pyrimidines as Covalent L858R/T790M Mutant Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors

Ryan Wurz; Liping H. Pettus; Kate S. Ashton; James Brown; Jian Jeffrey Chen; Brad Herberich; Fang-Tsao Hong; Essa Hu-Harrington; Tom Nguyen; David J. St. Jean; Seifu Tadesse; David Bauer; Michele Kubryk; Jinghui Zhan; Keegan Cooke; Petia Mitchell; Kristin L. Andrews; Faye Hsieh; Dean Hickman; Nataraj Kalyanaraman; Tian Wu; Darren L. Reid; Edward K. Lobenhofer; Dina A. Andrews; Nancy E. Everds; Roberto E. Guzman; Andrew T. Parsons; Simon J. Hedley; Jason Tedrow; Oliver R. Thiel

In nonsmall cell lung cancer (NSCLC), the threonine(790)-methionine(790) (T790M) point mutation of EGFR kinase is one of the leading causes of acquired resistance to the first generation tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. Herein, we describe the optimization of a series of 7-oxopyrido[2,3-d]pyrimidinyl-derived irreversible inhibitors of EGFR kinase. This led to the discovery of compound 24 which potently inhibits gefitinib-resistant EGFR(L858R,T790M) with 100-fold selectivity over wild-type EGFR. Compound 24 displays strong antiproliferative activity against the H1975 nonsmall cell lung cancer cell line, the first line mutant HCC827 cell line, and promising antitumor activity in an EGFR(L858R,T790M) driven H1975 xenograft model sparing the side effects associated with the inhibition of wild-type EGFR.


Oncotarget | 2017

MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor

Sean Caenepeel; Keegan Cooke; Sarah Wadsworth; Guo Huang; Lidia Robert; Blanca Homet Moreno; Giulia Parisi; Elaina Cajulis; Richard Kendall; Pedro J. Beltran; Antoni Ribas; Angela Coxon; Paul E. Hughes

Therapeutic resistance is a major obstacle to achieving durable clinical responses with targeted therapies, highlighting a need to elucidate the underlying mechanisms responsible for resistance and identify strategies to overcome this challenge. An emerging body of data implicates the tyrosine kinase MET in mediating resistance to BRAF inhibitors in BRAFV600E mutant melanoma. In this study we observed a dominant role for the HGF/MET axis in mediating resistance to BRAF and MEK inhibitors in models of BRAFV600E and NRAS mutant melanoma. In addition, we showed that MAPK pathway inhibition induced rapid increases in MET and GAB1 levels, providing novel mechanistic insight into how BRAFV600E mutant melanoma is primed for HGF-mediated rescue. We also determined that tumor-derived HGF, not systemic HGF, may be required to convey resistance to BRAF inhibition in vivo and that resistance could be reversed following treatment with AMG 337, a selective MET inhibitor. In summary, these findings support the clinical evaluation of MET-directed targeted therapy to circumvent resistance to BRAF and MEK inhibitors in BRAFV600E mutant melanoma. In addition, the induction of MET following treatment with BRAF and MEK inhibitors has the potential to serve as a predictive biomarker for identifying patients best suited for MET inhibitor combination therapy.


Journal for ImmunoTherapy of Cancer | 2015

Innate and adaptive immunity contribute to the anti-tumor mechanisms of action of OncoVEXmGM-CSF

Keegan Cooke; Karen Fitzgerald; Becky Yang; Petia Mitchell; Juan Estrada; Beltran Pedro; Achim K. Moesta

Meeting abstracts Talimogene laherparepvec, an investigational oncolytic immunotherapy, is a modified herpes simplex virus type-1 (HSV-1) designed to selectively replicate in tumors and to initiate a systemic immune response to target cancer cells. Intralesional administration of talimogene


Journal for ImmunoTherapy of Cancer | 2015

Oncovex MGM-CSF –mediated regression of contralateral (non-injected) tumors in the A20 murine lymphoma model does not involve direct viral oncolysis

Keegan Cooke; James B. Rottman; Jinghui Zhan; Petia Mitchell; Oluwatayo Ikotun; Brittany Yerby; Angela Chong; Charles Glaus; Achim K. Moesta; Beltran Pedro

Meeting abstracts Talimogene laherparepvec (T-VEC) is an injectable modified oncolytic herpes simplex virus type-1 (HSV-1) hypothesized to be efficacious by at least two complimentary mechanisms of action: a) direct oncolysis of the injected tumor and b) elicitation of a systemic anti-tumor immune

Researchain Logo
Decentralizing Knowledge