Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiko Nishio is active.

Publication


Featured researches published by Keiko Nishio.


Chemical Research in Toxicology | 2009

PROTEIN ADSORPTION OF ULTRAFINE METAL OXIDE AND ITS INFLUENCE ON CYTOTOXICITY TOWARD CULTURED CELLS

Masanori Horie; Keiko Nishio; Katsuhide Fujita; Shigehisa Endoh; Arisa Miyauchi; Yoshiro Saito; Hitoshi Iwahashi; Kazuhiro Yamamoto; Hideki Murayama; Hajime Nakano; Naoki Nanashima; Etsuo Niki; Yasukazu Yoshida

Many investigations about the cellular response by metal oxide nanoparticles in vitro have been reported. However, the influence of the adsorption ability of metal oxide nanoparticles toward cells is unknown. The aim of this study is to understand the influence of adsorption by metal oxide nanoparticles on the cell viability in vitro. The adsorption abilities of six kinds of metal oxide nanoparticles, namely, NiO, ZnO, TiO2, CeO2, SiO2, and Fe2O3, to Dulbeccos modified Eagles medium supplemented with a 10% fetal bovine serum (DMEM-FBS) component such as serum proteins and Ca2) were estimated. All of the metal oxide nanoparticles adsorbed proteins and Ca2+ in the DMEM-FBS; in particular, TiO2, CeO2, and ZnO showed strong adsorption abilities. Furthermore, the influence of the depletion of medium components by adsorption to metal oxide nanoparticles on cell viability and proliferation was examined. The particles were removed from the dispersion by centrifugation, and the supernatant was applied to the cells. Both the cell viability and the proliferation of human keratinocyte HaCaT cells and human lung carcinoma A549 cells were affected by the supernatant. In particular, cell proliferation was strongly inhibited by the supernatant of TiO2 and CeO2 dispersions. The supernatant showed depletion of serum proteins and Ca2+ by adsorption to metal oxide nanoparticles. When the adsorption effect was blocked by the pretreatment of particles with FBS, the inhibitory effect was lost. However, in NiO and ZnO, which showed ion release, a decrease of inhibitory effect by pretreatment was not shown. Furthermore, the association of the primary particle size and adsorption ability was examined in TiO2. The adsorption ability of TiO2 depended on the primary particle size. The TiO2 nanoparticles were size dependently absorbed with proteins and Ca2+, thereby inducing cytotoxicity. In conclusion, the adsorption ability of metal oxide nanoparticles is an important factor for the estimation of cytotoxicity in vitro for low-toxicity materials.


Free Radical Research | 2006

Turning point in apoptosis/necrosis induced by hydrogen peroxide.

Yoshiro Saito; Keiko Nishio; Yoko Ogawa; Junko Kimata; Tomoya Kinumi; Yasukazu Yoshida; Noriko Noguchi; Etsuo Niki

The turning point between apoptosis and necrosis induced by hydrogen peroxide (H2O2) have been investigated using human T-lymphoma Jurkat cells. Cells treated with 50 μM H2O2 exhibited caspase-9 and caspase-3 activation, finally leading to apoptotic cell death. Treatment with 500 μM H2O2 did not exhibit caspase activation and changed the mode of death to necrosis. On the other hand, the release of cytochrome c from the mitochondria was observed under both conditions. Treatment with 500 μM H2O2, but not with 50 μM H2O2, caused a marked decrease in the intracellular ATP level; this is essential for apoptosome formation. H2O2-reducing enzymes such as cellular glutathione peroxidase (cGPx) and catalase, which are important for the activation of caspases, were active under the 500 μM H2O2 condition. Prevention of intracellular ATP loss, which did not influence cytochrome c release, significantly activated caspases, changing the mode of cell death from necrosis to apoptosis. These results suggest that ATP-dependent apoptosome formation determines whether H2O2-induced cell death is due to apoptosis or necrosis.


Chemico-Biological Interactions | 2012

Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung

Hiroko Fukui; Masanori Horie; Shigehisa Endoh; Haruhisa Kato; Katsuhide Fujita; Keiko Nishio; Lilian Kaede Komaba; Junko Maru; Arisa Miyauhi; Ayako Nakamura; Shinichi Kinugasa; Yasukazu Yoshida; Yoshihisa Hagihara; Hitoshi Iwahashi

Zinc oxide (ZnO) nanoparticles are one of the important industrial nanoparticles. The production of ZnO nanoparticles is increasing every year. On the other hand, it is known that ZnO nanoparticles have strong cytotoxicity. In vitro studies using culture cells revealed that ZnO nanoparticles induce severe oxidative stress. However, the in vivo influence of ZnO nanoparticles is still unclear. In the present study, rat lung was exposed to ZnO nanoparticles by intratracheal instillation, and the influences of ZnO nanoparticles to the lung in the acute phase, particularly oxidative stress, were examined. Additionally, in vitro cellular influences of ZnO nanoparticles were examined using lung carcinoma A549 cells and compared to in vivo examinations. The ZnO nanoparticles used in this study released zinc ion in both dispersions. In the in vivo examinations, ZnO dispersion induced strong oxidative stress in the lung in the acute phase. The oxidative stress induced by the ZnO nanoparticles was stronger than that of a ZnCl(2) solution. Intratracheal instillation of ZnO nanoparticles induced an increase of lipid peroxide, HO-1 and alpha-tocopherol in the lung. The ZnO nanoparticles also induced strong oxidative stress and cell death in culture cells. Intracellular zinc level and reactive oxygen species were increased. These results suggest that ZnO nanoparticles induce oxidative stress in the lung in the acute phase. Intracellular ROS level had a high correlation with intracellular Zn(2+) level. ZnO nanoparticles will stay in the lung and continually release zinc ion, and thus stronger oxidative stress is induced.


Chemical Research in Toxicology | 2009

Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release.

Masanori Horie; Keiko Nishio; Katsuhide Fujita; Haruhisa Kato; Ayako Nakamura; Shinichi Kinugasa; Shigehisa Endoh; Arisa Miyauchi; Kazuhiro Yamamoto; Hideki Murayama; Etsuo Niki; Hitoshi Iwahashi; Yasukazu Yoshida; Junko Nakanishi

Nickel oxide (NiO) is one of the important industrial materials used in electronic substrates and for ceramic engineering. Advancements in industrial technology have enabled the manufacture of ultrafine NiO particles. On the other hand, it is well-known that nickel compounds exert toxic effects. The toxicity of nickel compounds is mainly caused by nickel ions (Ni(2+)). However, the ion release properties of ultrafine NiO particles are still unclear. In the present study, the influences of ultrafine NiO particles on cell viability were examined in vitro to obtain fundamental data for the biological effects of ultrafine green NiO and ultrafine black NiO. Ultrafine NiO particles showed higher cytotoxicities toward human keratinocyte HaCaT cells and human lung carcinoma A549 cells than fine NiO particles and also showed higher solubilities in culture medium (Dulbeccos modified Eagles medium supplemented with 10% fetal bovine serum) than fine NiO particles. In particular, the concentration of Ni(2+) released into the culture medium by ultrafine green NiO was 150-fold higher than that released by fine green NiO. The concentrations of Ni(2+) released by both types of NiO particles in an aqueous solution containing amino acids were remarkably higher than those released by NiO particles in water. Moreover, we prepared a uniform and stable dispersion of ultrafine black NiO in culture medium and examined its influence on cell viability in comparison with that of NiCl(2), a soluble nickel compound. A medium exchange after 6 h of exposure resulted in a loss of cytotoxicity in the cells exposed to NiCl(2), whereas cytotoxicity was retained in the cells exposed to NiO. Transmission electron microscope observations revealed uptake of both ultrafine and fine NiO particles into HaCaT cells. Taken together, the present results suggest that the intracellular Ni(2+) release could be an important factor that determines the cytotoxicity of NiO. Ultrafine NiO is more cytotoxic than fine NiO in vitro.


Metallomics | 2012

Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area

Masanori Horie; Katsuhide Fujita; Haruhisa Kato; Shigehisa Endoh; Keiko Nishio; Lilian Kaede Komaba; Ayako Nakamura; Arisa Miyauchi; Shinichi Kinugasa; Yoshihisa Hagihara; Etsuo Niki; Yasukazu Yoshida; Hitoshi Iwahashi

Association of cellular influences and physical and chemical properties were examined for 24 kinds of industrial metal oxide nanoparticles: ZnO, CuO, NiO, Sb(2)O(3), CoO, MoO(3), Y(2)O(3), MgO, Gd(2)O(3), SnO(2), WO(3), ZrO(2), Fe(2)O(3), TiO(2), CeO(2), Al(2)O(3), Bi(2)O(3), La(2)O(3), ITO, and cobalt blue pigments. We prepared a stable medium dispersion for each nanoparticle and examined the influence on cell viability and oxidative stress together with physical and chemical characterizations. ZnO, CuO, NiO, MgO, and WO(3) showed a large amount of metal ion release in the culture medium. The cellular influences of these soluble nanoparticles were larger than insoluble nanoparticles. TiO(2), SnO(2), and CeO(2) nanoparticles showed strong protein adsorption ability; however, cellular influences of these nanoparticles were small. The primary particle size and the specific surface area seemed unrelated to cellular influences. Cellular influences of metal oxide nanoparticles depended on the kind and concentrations of released metals in the solution. For insoluble nanoparticles, the adsorption property was involved in cellular influences. The primary particle size and specific surface area of metal oxide nanoparticles did not affect directly cellular influences. In conclusion the most important cytotoxic factor of metal oxide nanoparticles was metal ion release.


Journal of Biochemistry | 2011

Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells

Masanori Horie; Keiko Nishio; Haruhisa Kato; Katsuhide Fujita; Shigehisa Endoh; Ayako Nakamura; Arisa Miyauchi; Shinichi Kinugasa; Kazuhiro Yamamoto; Etsuo Niki; Yasukazu Yoshida; Yoshihisa Hagihara; Hitoshi Iwahashi

Cerium oxide (CeO(2)) is an important metal oxide used for industrial products. Many investigations about the cellular influence of CeO(2) nanoparticles have been done, but results are contradictory. It has been reported that CeO(2) nanoparticles have an anti-oxidative effect in cells, but it has also been reported that CeO(2) nanoparticles induce oxidative stress. We investigated the potential influence on cells and the mechanisms induced by CeO(2) nanoparticles in vitro. We prepared a stable CeO(2) culture medium dispersion. Cellular responses in CeO(2) medium-exposed cells were examined. Cellular uptake of CeO(2) nanoparticles was observed. After 24-h exposure, a high concentration of CeO(2) nanoparticles (∼200 mg/ml) induced an increase in the intracellular level of reactive oxygen species (ROS); a low concentration of CeO(2) nanoparticles induced a decrease in the intracellular ROS level. On the other hand, exposure of CeO(2) nanoparticle for 24 h had little influence on the cell viability. Exposure of CeO(2) nanoparticles increased the intracellular Ca(2+) concentration and also Calpain was activated. These results suggest that CeO(2) nanoparticles have a potential to induce intracellular oxidative stress and increase the intracellular Ca(2+) level, but these influences are small.


Journal of Occupational Health | 2011

Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles In Vivo and In Vitro

Masanori Horie; Hiroko Fukui; Keiko Nishio; Shigehisa Endoh; Haruhisa Kato; Katsuhide Fujita; Arisa Miyauchi; Ayako Nakamura; Mototada Shichiri; Noriko Ishida; Shinichi Kinugasa; Yasuo Morimoto; Etsuo Niki; Yasukazu Yoshida; Hitoshi Iwahashi

Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles In Vivo and In Vitro: Masanori Horie, et al. Health Research Institute —


Neuroscience Letters | 2009

Preparation and application of monoclonal antibodies against oxidized DJ-1. Significant elevation of oxidized DJ-1 in erythrocytes of early-stage Parkinson disease patients

Yoshiro Saito; Takao Hamakubo; Yasukazu Yoshida; Yoko Ogawa; Yasuo Hara; Harutoshi Fujimura; Yasuharu Imai; Hiroko Iwanari; Yasuhiro Mochizuki; Mototada Shichiri; Keiko Nishio; Tomoya Kinumi; Noriko Noguchi; Tatsuhiko Kodama; Etsuo Niki

DJ-1 was initially identified as a novel oncogene and has recently been found to be a causative gene for a familial form of Parkinsons disease (PD), viz, PARK7. Cysteine residue at position 106 (Cys-106) in DJ-1 was found to be oxidized preferentially under oxidative stress. In the present study, we developed specific antibodies against Cys-106-oxidized DJ-1 using baculovirus particles displaying the surface glycoprotein gp64-fusion protein as the immunizing agent. Western blot analysis combined with two-dimensional gel electrophoresis revealed that these antibodies specifically recognized oxidized DJ-1. Furthermore, we developed a competitive enzyme-linked immunosorbent assay (ELISA) for detecting oxidized DJ-1 and measured blood levels of oxidized DJ-1 in PD patients (n=15). It was observed that the levels of oxidized DJ-1 in erythrocytes of unmedicated PD patients were markedly higher without overlap than those of medicated PD patients and healthy subjects. No significant difference was observed in DJ-1 levels between mediated and unmediated PD patient. These results suggest the oxidative modification of DJ-1 in PD patients and the potential application of the antibody for diagnosis of PD at early-stage.


Free Radical Biology and Medicine | 2010

Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function.

Yoshiro Saito; Keiko Nishio; Yoko Akazawa; Kazunori Yamanaka; Akiko Miyama; Yasukazu Yoshida; Noriko Noguchi; Etsuo Niki

Glutamate plays a critical role in pathological cell death within the nervous system. Vitamin E is known to protect cells from glutamate cytotoxicity, either by direct antioxidant action or by indirect nonantioxidant action. Further, α-tocotrienol (α-T3) has been reported to be more effective against glutamate-induced cytotoxicity than α-tocopherol (α-T). To shed more light on the function of vitamin E against glutamate toxicity, the protective effects of eight vitamin E homologues and related compounds, 2,2,5,7,8-pentamethyl-6-chromanol (PMC) and 2-carboxy-2,5,7,8-pentamethyl-6-chromanol (Trolox), against glutamate-induced cytotoxicity on immature primary cortical neurons were examined using different protocols. Glutamate induced the depletion of glutathione and generation of reactive oxygen species and lipid hydroperoxides, leading to cell death. α-, β-, γ-, and δ-T and -T3; PMC; and Trolox all exerted cytoprotective effects against glutamate-induced cytotoxicity, and a longer preincubation time increased both the cellular content and the cytoprotective effects of T more significantly than those of T3, the effect of preincubation being relatively small for T3 and PMC. The protective effect of Trolox was less potent than that of PMC. The cytoprotective effects of α-T and α-T3 corresponded to their intracellular content. Further, lipid peroxidation products were measured after reduction with triphenylphosphine followed by saponification with potassium hydroxide. It was found that glutamate treatment increased the formation of hydroxyeicosatetraenoic acid, hydroxyoctadecadienoic acid, and 8-F(2)-isoprostane 2α, which was suppressed by α-T. This study shows that vitamin E protects cells from glutamate-induced toxicity primarily by direct antioxidant action and that the apparent higher capacity of T3 compared to T is ascribed to the faster uptake of T3 compared to T into the cells. It is suggested that, considering the bioavailability, α-T should be more effective than α-T3 against glutamate toxicity in vivo.


Annals of the New York Academy of Sciences | 2004

Characterization of Cellular Uptake and Distribution of Vitamin E

Yoshiro Saito; Yasukazu Yoshida; Keiko Nishio; Mieko Hayakawa; Etsuo Niki

Abstract: We previously reported that tocotrienols acted as more potent inhibitors against selenium deficiency‐induced cell death than the corresponding tocopherol isoforms (J. Biol. Chem. 2003;278:39428‐39434). In the present study, we first compared the differences in the cellular uptake between α‐tocopherol (α‐Toc) and α‐tocotrienol (α‐Toc‐3). The initial rate of cellular uptake of α‐Toc‐3 was 70‐fold higher than that of α‐Toc. Subcellular fractionation analysis of α‐Toc‐3 and α‐Toc‐fortified cells showed similar cellular distribution of these antioxidants, which was directly proportional to the lipid distribution. The cells containing similar amounts of α‐Toc‐3 and α‐Toc showed similar resistance against the oxidative stress caused by peroxides. These results suggest that the apparent higher cytoprotective effect of α‐Toc‐3 than α‐Toc is primarily ascribed to its higher cellular uptake.

Collaboration


Dive into the Keiko Nishio's collaboration.

Top Co-Authors

Avatar

Yasukazu Yoshida

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masanori Horie

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuhide Fujita

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shigehisa Endoh

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshihisa Hagihara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayako Nakamura

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Haruhisa Kato

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge