Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiro Uchino is active.

Publication


Featured researches published by Keiro Uchino.


Insect Biochemistry and Molecular Biology | 2010

Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection

Yoko Takasu; Isao Kobayashi; Kelly J. Beumer; Keiro Uchino; Hideki Sezutsu; Suresh Sajwan; Dana Carroll; Toshiki Tamura; Michal Zurovec

Targeted mutagenesis is one of the key methods for functional gene analysis. A simplified variant of gene targeting uses direct microinjection of custom-designed Zinc Finger Nuclease (ZFN) mRNAs into Drosophila embryos. To evaluate the applicability of this method to gene targeting in another insect, we mutagenized the Bombyx mori epidermal color marker gene BmBLOS2, which controls the formation of uric acid granules in the larval epidermis. Our results revealed that ZFN mRNA injection is effective to induce somatic, as well as germline, mutations in a targeted gene by non-homologous end joining (NHEJ). The ZFN-induced NHEJ mutations lack end-filling and blunt ligation products, and include mainly 7 bp or longer deletions, as well as single nucleotide insertions. These observations suggest that the B. mori double-strand break repair system relies on microhomologies rather than on a canonical ligase IV-dependent mechanism. The frequency of germline mutants in G(1) was sufficient to be used for gene targeting relying on a screen based solely on molecular methods.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori

Shogo Atsumi; Kazuhisa Miyamoto; Kimiko Yamamoto; Junko Narukawa; Sawako Kawai; Hideki Sezutsu; Isao Kobayashi; Keiro Uchino; Toshiki Tamura; Kazuei Mita; Keiko Kadono-Okuda; Sanae Wada; Kohzo Kanda; Marian R. Goldsmith; Hiroaki Noda

Bt toxins derived from the arthropod bacterial pathogen Bacillus thuringiensis are widely used for insect control as insecticides or in transgenic crops. Bt resistance has been found in field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. Widespread planting of crops expressing Bt toxins has raised concerns about the potential increase of resistance mutations in targeted insects. By using Bombyx mori as a model, we identified a candidate gene for a recessive form of resistance to Cry1Ab toxin on chromosome 15 by positional cloning. BGIBMGA007792-93, which encodes an ATP-binding cassette transporter similar to human multidrug resistance protein 4 and orthologous to genes associated with recessive resistance to Cry1Ac in Heliothis virescens and two other lepidopteran species, was expressed in the midgut. Sequences of 10 susceptible and seven resistant silkworm strains revealed a common tyrosine insertion in an outer loop of the predicted transmembrane structure of resistant alleles. We confirmed the role of this ATP-binding cassette transporter gene in Bt resistance by converting a resistant silkworm strain into a susceptible one by using germline transformation. This study represents a direct demonstration of Bt resistance gene function in insects with the use of transgenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene.

Takashi Sakudoh; Hideki Sezutsu; Takeharu Nakashima; Isao Kobayashi; Hirofumi Fujimoto; Keiro Uchino; Yutaka Banno; Hidetoshi Iwano; Hideaki Maekawa; Toshiki Tamura; Hiroshi Kataoka; Kozo Tsuchida

Mechanisms for the uptake and transport of carotenoids, essential nutrients for humans, are not well understood in any animal system. The Y (Yellow blood) gene, a critical cocoon color determinant in the silkworm Bombyx mori, controls the uptake of carotenoids into the intestinal mucosa and the silk gland. Here we provide evidence that the Y gene corresponds to the intracellular carotenoid-binding protein (CBP) gene. In the Y recessive strain, the absence of an exon, likely due to an incorrect mRNA splicing caused by a transposon-associated genomic deletion, generates a nonfunctional CBP mRNA, resulting in colorless hemolymph and white cocoons. Enhancement of carotenoid uptake and coloration of the white cocoon was achieved by germ-line transformation with the CBP gene. This study demonstrates the existence of a genetically facilitated intracellular process beyond passive diffusion for carotenoid uptake in the animal phyla, and paves the way for modulating silk color and lipid content through genetic engineering.


PLOS Genetics | 2012

Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori

Takaaki Daimon; Toshinori Kozaki; Ryusuke Niwa; Isao Kobayashi; Kenjiro Furuta; Toshiki Namiki; Keiro Uchino; Yutaka Banno; Susumu Katsuma; Toshiki Tamura; Kazuei Mita; Hideki Sezutsu; Masayoshi Nakayama; Kyo Itoyama; Toru Shimada; Tetsuro Shinoda

Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.


PLOS Genetics | 2011

A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.

Takeshi Sakurai; Hidefumi Mitsuno; Stephan Shuichi Haupt; Keiro Uchino; Fumio Yokohari; Takaaki Nishioka; Isao Kobayashi; Hideki Sezutsu; Toshiki Tamura; Ryohei Kanzaki

In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus

Katsuhiko Ito; Kurako Kidokoro; Hideki Sezutsu; Junko Nohata; Kimiko Yamamoto; Isao Kobayashi; Keiro Uchino; Andrew Kalyebi; Ryokitsu Eguchi; Wajiro Hara; Toshiki Tamura; Susumu Katsuma; Toru Shimada; Kazuei Mita; Keiko Kadono-Okuda

Bombyx mori densovirus type 2 (BmDNV-2), a parvo-like virus, replicates only in midgut columnar cells and causes fatal disease. The resistance expressed in some silkworm strains against the virus is determined by a single gene, nsd-2, which is characterized as nonsusceptibility irrespective of the viral dose. However, the responsible gene has been unknown. We isolated the nsd-2 gene by positional cloning. The virus resistance is caused by a 6-kb deletion in the ORF of a gene encoding a 12-pass transmembrane protein, a member of an amino acid transporter family, and expressed only in midgut. Germ-line transformation with a wild-type transgene expressed in the midgut restores susceptibility, showing that the defective membrane protein is responsible for resistance. Cumulatively, our data show that the membrane protein is a functional receptor for BmDNV-2. This is a previously undescribed report of positional cloning of a mutant gene in Bombyx and isolation of an absolute virus resistance gene in insects.


Insect Biochemistry and Molecular Biology | 2013

Efficient disruption of endogenous Bombyx gene by TAL effector nucleases

Suresh Sajwan; Yoko Takasu; Toshiki Tamura; Keiro Uchino; Hideki Sezutsu; Michal Zurovec

Engineered nucleases are proteins that are able to cleave DNA at specified sites in the genome. These proteins have recently been used for gene targeting in a number of organisms. We showed earlier that zinc finger nucleases (ZFNs) can be used for generating gene-specific mutations in Bombyx mori by an error-prone DNA repair process of non-homologous end joining (NHEJ). Here we test the utility of another type of chimeric nuclease based on bacterial TAL effector proteins in order to induce targeted mutations in silkworm DNA. We designed three TAL effector nucleases (TALENs) against the genomic locus BmBLOS2, previously targeted by ZFNs. All three TALENs were able to induce mutations in silkworm germline cells suggesting a higher success rate of this type of chimeric enzyme. The efficiency of two of the tested TALENs was slightly higher than of the successful ZFN used previously. Simple design, high frequency of candidate targeting sites and comparable efficiency of induction of NHEJ mutations make TALENs an important alternative to ZFNs.


Insect Biochemistry and Molecular Biology | 2008

Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori.

Keiro Uchino; Hideki Sezutsu; Morikazu Imamura; Isao Kobayashi; Ken-ichiro Tatematsu; Tetsuya Iizuka; Naoyuki Yonemura; Kazuei Mita; Toshiki Tamura

Enhancer trapping and insertional mutagenesis are powerful tools for analyzing genetic function. To construct an enhancer trap system in the silkworm Bombyx mori, we developed efficient jumpstarter strains by inserting the piggyBac transposase gene under the control of Bombyx cytoplasmic actin gene (BmA3) promoter into the genome. To stabilize the inserted transgene, the jumpstarter strains were constructed using the Minos transposon as a vector. The ability of each of the 13 jumpstarter strains to remobilize their respective transposons was tested by crossing the jumpstarters with a mutator strain carrying a GAL4 construct containing the BmA3 promoter. Four strains with high remobilization activity were then selected and used to produce enhancer trap lines by crossing with the mutator strains and hybridizing the F1 progeny with a UAS-EGFP strain. Several enhancer trap lines showing characteristic expression patterns at the embryonic, larval, pupal, and adult stages were detected in the subsequent generation. Approximately 10-40% of the silkworms from each cross in the hybridized brood had a remobilized mutator. An analysis of the insertion positions in 105 lines by inverse PCR using a silkworm genome database revealed that remobilization occurred randomly in each chromosome. The frequency of insertion of the remobilized mutator into putative exons, introns, intergenic regions, and repetitive sequences was 12, 9, 36, and 40%, respectively. We concluded that the piggyBac-based GAL4 enhancer trap system developed in this study is applicable for large-scale enhancer trapping in the silkworm.


Bioscience, Biotechnology, and Biochemistry | 2007

A New Method for the Modification of Fibroin Heavy Chain Protein in the Transgenic Silkworm

Katsura Kojima; Yoshihiko Kuwana; Hideki Sezutsu; Isao Kobayashi; Keiro Uchino; Toshiki Tamura; Yasushi Tamada

We constructed a new plasmid vector for the production of a modified silk fibroin heavy chain protein (H-chain) in the transgenic silkworm. The plasmid (pHC-null) contained the promoter and the 3′ region of a gene encoding the H-chain and the coding regions for the N-terminal domain and the C-terminal domain of the H-chain. For the model protein, we cloned a foreign gene that encoded EGFP between the N-terminal domain and the C-terminal domain in pHC-null and generated transgenic silkworms that produced a modified H-chain, HC-EGFP. Transgenic silkworms produced HC-EGFP in the posterior part of silk gland cells, secreted it into the lumen of the gland, and produced a cocoon with HC-EGFP as part of the fibroin proteins. N-terminal sequencing of HC-EGFP localized the signal sequence cleavage site to between positions A(21) and N(22). These results indicate that our new plasmid successfully produced the modified H-chain in a transgenic silkworm.


PLOS ONE | 2013

Efficient TALEN construction for Bombyx mori gene targeting.

Yoko Takasu; Suresh Sajwan; Takaaki Daimon; Mizuko Osanai-Futahashi; Keiro Uchino; Hideki Sezutsu; Toshiki Tamura; Michal Zurovec

Engineered nucleases are artificial enzymes able to introduce double stranded breaks at desired genomic locations. The double stranded breaks start the error-prone repair process of non-homologous end-joining (NHEJ), which eventually leads to the induction of mutations at target sites. We showed earlier that ZFNs and TALENs are able to induce NHEJ mutations in the B. mori genome. In order to optimize our mutagenesis protocol, we modified one of the reported truncated TALEN scaffolds and optimized it for use in the B. mori embryo. We also established a novel B. mori somatic cell assay suitable for the preselection of highly efficient TALENs directly in the B. mori model system. We compared the efficiency of several TALEN pairs based on three different frameworks using the BmBLOS2 gene. The new active TALENs show one order of magnitude higher efficiency than those we used previously. We confirmed the utility of our improved protocol by mutagenesis of the autosomal gene, red egg (Bm-re) and showed that it allows obtaining homozygous mutants in G1. Our procedure minimizes the chance of failure in B. mori gene targeting experiments.

Collaboration


Dive into the Keiro Uchino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiki Tamura

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Isao Kobayashi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Iizuka

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Ken-ichiro Tatematsu

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Takuya Tsubota

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Yoko Takasu

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoyuki Yonemura

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge