Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken-ichiro Tatematsu is active.

Publication


Featured researches published by Ken-ichiro Tatematsu.


Insect Biochemistry and Molecular Biology | 2008

Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori.

Keiro Uchino; Hideki Sezutsu; Morikazu Imamura; Isao Kobayashi; Ken-ichiro Tatematsu; Tetsuya Iizuka; Naoyuki Yonemura; Kazuei Mita; Toshiki Tamura

Enhancer trapping and insertional mutagenesis are powerful tools for analyzing genetic function. To construct an enhancer trap system in the silkworm Bombyx mori, we developed efficient jumpstarter strains by inserting the piggyBac transposase gene under the control of Bombyx cytoplasmic actin gene (BmA3) promoter into the genome. To stabilize the inserted transgene, the jumpstarter strains were constructed using the Minos transposon as a vector. The ability of each of the 13 jumpstarter strains to remobilize their respective transposons was tested by crossing the jumpstarters with a mutator strain carrying a GAL4 construct containing the BmA3 promoter. Four strains with high remobilization activity were then selected and used to produce enhancer trap lines by crossing with the mutator strains and hybridizing the F1 progeny with a UAS-EGFP strain. Several enhancer trap lines showing characteristic expression patterns at the embryonic, larval, pupal, and adult stages were detected in the subsequent generation. Approximately 10-40% of the silkworms from each cross in the hybridized brood had a remobilized mutator. An analysis of the insertion positions in 105 lines by inverse PCR using a silkworm genome database revealed that remobilization occurred randomly in each chromosome. The frequency of insertion of the remobilized mutator into putative exons, introns, intergenic regions, and repetitive sequences was 12, 9, 36, and 40%, respectively. We concluded that the piggyBac-based GAL4 enhancer trap system developed in this study is applicable for large-scale enhancer trapping in the silkworm.


Archives of Insect Biochemistry and Physiology | 2011

An efficient binary system for gene expression in the silkworm, Bombyx mori, using GAL4 variants

Isao Kobayashi; Katsura Kojima; Keiro Uchino; Hideki Sezutsu; Tetsuya Iizuka; Ken-ichiro Tatematsu; Naoyuki Yonemura; Hiromitsu Tanaka; Minoru Yamakawa; Eri Ogura; Yusuke Kamachi; Toshiki Tamura

A binary gene expression system using the yeast GAL4 DNA-binding protein and the upstream activating sequence (UAS) of galactose-driven yeast genes is an established and powerful tool for the analysis of gene function. However, in the domesticated silkworm, Bombyx mori, this system has been limited in its utility by the relatively low transcriptional activation activity of GAL4 and by its toxicity. In this study, we investigated the potential of several established GAL4 variants (GAL4Δ, GAL4VP16, GAL4VPmad2, GAL4VPmad3, and GAL4NFκB) and of two new GAL4 variants, GAL4Rel and GAL4Relish, which contain the transcription-activating regions of the BmRel and BmRelish genes, respectively, to improve the utility of the GAL4/UAS system in B. mori. We generated constructs containing these GAL4 variants under the control of constitutive or inducible promoters and investigated their transcription-activating activity in cultured B. mori cells and embryos and in transgenic silkworms. GAL4VP16 and GAL4NFκB exhibited high transactivation activity but appeared to be toxic when used as transgenes under the control of a constitutive promoter. Similarly, GAL4VPmad2 and GAL4VPmad3 exhibited higher transactivation activity than GAL4, combined with strong toxicity. The transcription-activating activity of GAL4Δ was about twice that of GAL4. The two new GAL4 variants, GAL4Rel and GAL4Relish, were less active than GAL4. Using GAL4VP16 and GAL4NFκB constructs, we have developed a very efficient GAL4/UAS binary gene expression system for use in cultured B. mori cells and embryos and in transgenic silkworms.


mAbs | 2015

Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori)

Minoru Tada; Ken-ichiro Tatematsu; Akiko Ishii-Watabe; Akira Harazono; Daisuke Takakura; Noritaka Hashii; Hideki Sezutsu; Nana Kawasaki

In response to the successful use of monoclonal antibodies (mAbs) in the treatment of various diseases, systems for expressing recombinant mAbs using transgenic animals or plants have been widely developed. The silkworm (Bombyx mori) is a highly domesticated insect that has recently been used for the production of recombinant proteins. Because of their cost-effective breeding and relatively easy production scale-up, transgenic silkworms show great promise as a novel production system for mAbs. In this study, we established a transgenic silkworm stably expressing a human-mouse chimeric anti-CD20 mAb having the same amino acid sequence as rituximab, and compared its characteristics with rituximab produced by Chinese hamster ovary (CHO) cells (MabThera®). The anti-CD20 mAb produced in the transgenic silkworm showed a similar antigen-binding property, but stronger antibody-dependent cell-mediated cytotoxicity (ADCC) and weaker complement-dependent cytotoxicity (CDC) compared to MabThera. Post-translational modification analysis was performed by peptide mapping using liquid chromatography/mass spectrometry. There was a significant difference in the N-glycosylation profile between the CHO− and the silkworm-derived mAbs, but not in other post-translational modifications including oxidation and deamidation. The mass spectra of the N-glycosylated peptide revealed that the observed biological properties were attributable to the characteristic N-glycan structures of the anti-CD20 mAbs produced in the transgenic silkworms, i.e., the lack of the core-fucose and galactose at the non-reducing terminal. These results suggest that the transgenic silkworm may be a promising expression system for the tumor-targeting mAbs with higher ADCC activity.


Journal of Materials Chemistry B | 2014

Recombinant silk fibroin incorporated cell-adhesive sequences produced by transgenic silkworm as a possible candidate for use in vascular graft

Tetsuo Asakura; Makoto Isozaki; Toshiki Saotome; Ken-ichiro Tatematsu; Hideki Sezutsu; Nobuo Kuwabara; Yasumoto Nakazawa

Interest in vascular grafts has recently grown because more patients are undergoing procedures that involve these grafts. However, smaller grafts with diameters <6 mm made from conventional biomaterials are associated with a high incidence of thrombosis, and therefore the development of improved materials suitable for small vascular grafts is highly desirable. In this paper, four kinds of recombinant Bombyx mori silk fibroins were prepared using transgenic techniques for use as silk vascular graft with a diameter of <6 mm. The peptide sequence TS(CDPGYIGSRAS)8 derived from the laminin B1 chain or the combination of two kinds of sequences, TS(CDPGYIGSRAS)8 and (TGRGDSPAS)8 derived from fibronectin, was incorporated into the light (L)-chain or the heavy (H)-chain of the silk fibroin. The fractions of the incorporated peptide sequences range from 0.8% to 7.2% by weight in the recombinant silk fibroins. This incorporation causes a very small increase in the random coil fraction of silk fibroin and a decrease in the tensile strength. Compared with native silk fibroin, the adhesive activities of mouse endothelial and smooth muscle cells increase significantly with the recombinant silk fibroin films incorporating only the TS(CDPGYIGSRAS)8 sequence independent of the L- or H-chains. A similar tendency was observed for the high migration activities of the endothelial cells in vitro and also the longer migration distance of the endothelial cell from the anastomotic part of rat abdominal aorta in vivo when this recombinant silk fibroin was used as a coating material for the silk graft. In view of the results, the recombinant silk fibroin incorporating the laminin peptide sequence can be potentially used as a vascular graft material.


Biochemical and Biophysical Research Communications | 2014

Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

Yasuhiko Matsumoto; Masaki Ishii; Kenichi Ishii; Wataru Miyaguchi; Ryo Horie; Yoshinori Inagaki; Hiroshi Hamamoto; Ken-ichiro Tatematsu; Keiro Uchino; Toshiki Tamura; Hideki Sezutsu; Kazuhisa Sekimizu

We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.


Journal of Materials Chemistry B | 2015

Introduction of VEGF or RGD sequences improves revascularization properties of Bombyx mori silk fibroin produced by transgenic silkworm

Toshiki Saotome; Haruki Hayashi; Ryo Tanaka; Atsushi Kinugasa; Shouji Uesugi; Ken-ichiro Tatematsu; Hideki Sezutsu; Nobuo Kuwabara; Tetsuo Asakura

Bombyx mori silk fibroin (SF) was successfully used for vascular grafts implanted in rats or dogs. Current transgenic technology can be developed to produce SF with improved properties. In this study, the vascular endothelial growth factor (VEGF) or the repeated fibronectin-derived sequence, TGRGDSPAS, and arginylglycylaspartic acid (RGD) were introduced into the SF heavy chain to improve its properties. A blood compatibility assay was performed to study lactose dehydrogenase (LDH) activity for both transgenic and wild type SF. Growth of human umbilical endothelial cells (HUVECs) showed greater enhancement of cellularization behaviour for the transgenic SF samples (VEGF and RGD) than for the wild type (WT) SF. VEGF SF also showed lower platelet adhesion than the RGD SF and WT SF. An in vivo implantation study supported these in vitro results. In particular, early endothelialisation was observed for VEGF transgenic SF, including the occurrence of native tissue organization at three months after implantation in rat abdominal aorta.


SpringerPlus | 2014

Effect of ATG initiation codon context motifs on the efficiency of translation of mRNA derived from exogenous genes in the transgenic silkworm, Bombyx mori

Ken-ichiro Tatematsu; Keiro Uchino; Hideki Sezutsu; Toshiki Tamura

The context sequence motif surrounding the ATG initiation codon influences mRNA translation efficiency and affects protein production; however, the optimal sequence differs among species. To determine the optimal sequence for production of recombinant proteins in a transgenic silkworm, we compared 14-nucleotide context motifs around the ATG (ATG-context) in 50 silkworm genes and found the following consensus: (A/T)AN(A/T)ATCAAAatgN. We were also able to define the least-common motif: CCN(C/G)CGN(C/T/G)(G/C/T)(T/G)atgC, which served as a negative control. To examine the regulatory role of these motifs in protein expression, we constructed reporter plasmids containing different ATG-context motifs together with either the luciferase gene or an enhanced green fluorescent protein (EGFP) gene. These constructs were then used for comparison of luciferase reporter activity and EGFP production in BmN4 cells in vitro as well as in transgenic silkworms in vivo. We detected 10-fold higher luciferase activity in BmN4 cells transfected with the consensus ATG-context motif construct, compared to the negative control plasmid. ELISA measurements of EGFP translation products with the corresponding constructs in BmN4 cells showed consistently similar results. Interestingly, the translation efficiency of the novel consensus ATG-context motif did not show the highest activity in the transgenic silkworms in vivo, except for the fat body. The highest efficiency in the middle and posterior silk glands was produced by the sericin 1 context. Our results show that the ATG-context motifs differ among silkworm tissues. This result is important for the further improvement of the transgenic silkworm system for the production of recombinant proteins.


Journal of Bioscience and Bioengineering | 2018

N-glycan sialylation in a silkworm-baculovirus expression system

Masatoshi Suganuma; Tsuyoshi Nomura; Yukiko Higa; Yukiko Kataoka; Shunsuke Funaguma; Hironobu Okazaki; Takeo Suzuki; Kazuhito Fujiyama; Hideki Sezutsu; Ken-ichiro Tatematsu; Toshiki Tamura

A silkworm-baculovirus system is particularly effective for producing recombinant proteins, including glycoproteins. However, N-glycan structures in silkworm differ from those in mammals. Glycoproteins in silkworm are secreted as pauci-mannose type N-glycans without sialic acid or galactose residues. Sialic acid on N-glycans plays important roles in protein functions. Therefore, we developed pathways for galactosylation and sialylation in silkworm. Sialylated N-glycans on proteins were successfully produced in silkworm by co-expressing galactosyltransferase and sialyltransferase and providing an external supply of a sialylation-related substrate. α2,3/α2,6 Sialylation to N-glycans was controlled by changing the type of sialyltransferase expressed in silkworm. Furthermore, the co-expression of N-acetylglucosaminyltransferase II facilitated the formation of additional di-sialylated N-glycan structures. Our results provide new information on the control of N-glycosylation in silkworm.


Scientific Reports | 2017

Co-expression of BirA with biotin bait achieves in vivo biotinylation of overexpressed stable N -glycosylated sRAGE in transgenic silkworms

Miyuki Kumano-Kuramochi; Ken-ichiro Tatematsu; Mayumi Ohnishi-Kameyama; Mari Maeda-Yamamoto; Toshiro Kobori; Hideki Sezutsu; Sachiko Machida

Here, we demonstrated the expression of the N-glycosylated extracellular ligand binding domain of receptor for advanced glycation end products (sRAGE) in middle silk glands (MSGs) of transgenic silkworms using the GAL4/UAS system. Over 1 mg of sRAGE was obtained from one transgenic silkworm. sRAGE purified from the silkworm exhibited good stability and maintained specific ligand-binding ability. In addition, N-glycan analysis of sRAGE revealed that N-glucan completely lacked potentially allergenic fucose. Moreover, co-expression of biotin ligase (BirA) with C-terminal BioEase-tagged sRAGE in MSGs resulted in efficient biotinylation of sRAGE after addition of biotin bait. C-terminal biotinylated sRAGE could be immobilized onto a solid surface in one direction through binding to streptavidin without any loss of ability. The dissociation constant of sRAGE with fructose-BSA, a typical RAGE ligand, was 7.25 × 10−7 M, consistent with that on the mammalian cell surface. Thus, we developed a novel, innovative silkworm expression system for efficient expression of recombinant sRAGE, which could serve as a basis for the elucidation of RAGE-ligand interactions and facilitate the search for new ligands and inhibitors.


Yakugaku Zasshi-journal of The Pharmaceutical Society of Japan | 2018

Construction of a Platform for the Development of Pharmaceutical and Medical Applications Using Transgenic Silkworms

Hideki Sezutsu; Megumi Sumitani; Mari Kondo; Isao Kobayashi; Yoko Takasu; Takao K. Suzuki; Naoyuki Yonemura; Tetsuya Iizuka; Keiro Uchino; Toshiki Tamura; Takuya Tsubota; Ken-ichiro Tatematsu

 We have been constructing a platform for the development of pharmaceutical and medical applications using the domesticated silkworm, Bombyx mori, as a new animal model for drug development and evaluation. Because silkworm larvae originally have the capacity to synthesize up to 0.5 g of silk proteins, genetically modified silkworms (transgenic silkworms) are expected to have high potential in the production of recombinant silks/proteins. An innovative method for generating transgenic silkworms was established in 2000, and ever since this epoch-defining technological development, longstanding efforts have succeeded in developing novel silks that enable the manufacture of new textile materials for regenerative medical uses. Furthermore, we have succeeded in developing a new system of recombinant protein production. This recombinant protein production system is currently capable of producing a maximum of approximately 15 mg recombinant protein per silkworm larva. Transgenic silkworms have also been shown to produce a wide variety of useful proteins, including antibodies and membrane proteins. Some of these recombinant proteins have been in commercial use since 2011. In addition, we have been developing transgenic silkworms as a novel animal model for testing medicines based on metabolic similarities between silkworms and mammals. These applications show the suitability and potential of transgenic silkworms for medical use. Here, we will describe the challenges faced in creating a transgenic silkworm-based platform for pharmaceutical and medical applications.

Collaboration


Dive into the Ken-ichiro Tatematsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiro Uchino

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Toshiki Tamura

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Iizuka

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Isao Kobayashi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Naoyuki Yonemura

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Tetsuo Asakura

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Atsushi Miyawaki

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge