Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith K. Murai is active.

Publication


Featured researches published by Keith K. Murai.


Nature Neuroscience | 2003

Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling

Keith K. Murai; Louis N. Nguyen; Fumitoshi Irie; Yu Yamaguchi; Elena B. Pasquale

Communication between glial cells and neurons is emerging as a critical parameter of synaptic function. However, the molecular mechanisms underlying the ability of glial cells to modify synaptic structure and physiology are poorly understood. Here we describe a repulsive interaction that regulates postsynaptic morphology through the EphA4 receptor tyrosine kinase and its ligand ephrin-A3. EphA4 is enriched on dendritic spines of pyramidal neurons in the adult mouse hippocampus, and ephrin-A3 is localized on astrocytic processes that envelop spines. Activation of EphA4 by ephrin-A3 was found to induce spine retraction, whereas inhibiting ephrin/EphA4 interactions distorted spine shape and organization in hippocampal slices. Furthermore, spine irregularities in pyramidal neurons from EphA4 knockout mice and in slices transfected with kinase-inactive EphA4 indicated that ephrin/EphA4 signaling is critical for spine morphology. Thus, our data support a model in which transient interactions between the ephrin-A3 ligand and the EphA4 receptor regulate the structure of excitatory synaptic connections through neuroglial cross-talk.


Cell | 2011

Astrocytes Are Endogenous Regulators of Basal Transmission at Central Synapses

Aude Panatier; Joanne Vallée; Michael Haber; Keith K. Murai; Jean-Claude Lacaille; Richard Robitaille

Basal synaptic transmission involves the release of neurotransmitters at individual synapses in response to a single action potential. Recent discoveries show that astrocytes modulate the activity of neuronal networks upon sustained and intense synaptic activity. However, their ability to regulate basal synaptic transmission remains ill defined and controversial. Here, we show that astrocytes in the hippocampal CA1 region detect synaptic activity induced by single-synaptic stimulation. Astrocyte activation occurs at functional compartments found along astrocytic processes and involves metabotropic glutamate subtype 5 receptors. In response, astrocytes increase basal synaptic transmission, as revealed by the blockade of their activity with a Ca(2+) chelator. Astrocytic modulation of basal synaptic transmission is mediated by the release of purines and the activation of presynaptic A(2A) receptors by adenosine. Our work uncovers an essential role for astrocytes in the regulation of elementary synaptic communication and provides insight into fundamental aspects of brain function.


Journal of Cell Science | 2003

'Eph'ective signaling: forward, reverse and crosstalk

Keith K. Murai; Elena B. Pasquale

The Eph receptors comprise the largest group of receptor tyrosine kinases and are found in a wide variety of cell types in developing and mature tissues. Their ligands are the ephrins, a family of membrane-bound proteins found in lipid rafts. In the past decade, Eph receptors and ephrins have been implicated in a vast array of cellular processes. Unlike other receptor tyrosine kinases, however, the Eph receptors seem to be geared towards regulating cell shape and movement rather than proliferation. Studies have uncovered intricate signaling networks that center around the ligand-receptor complex, and this may account for the broad repertoire of functions of Eph proteins. Deciphering the bi-directional pathways emanating from an Eph receptor-ephrin complex will not only help us to understand basic biological processes, but may also provide important insight into disease.


The Journal of Neuroscience | 2006

Cooperative Astrocyte and Dendritic Spine Dynamics at Hippocampal Excitatory Synapses

Michael Haber; Lei Zhou; Keith K. Murai

Accumulating evidence is redefining the importance of neuron–glial interactions at synapses in the CNS. Astrocytes form “tripartite” complexes with presynaptic and postsynaptic structures and regulate synaptic transmission and plasticity. Despite our understanding of the importance of neuron–glial relationships in physiological contexts, little is known about the structural interplay between astrocytes and synapses. In the past, this has been difficult to explore because studies have been hampered by the lack of a system that preserves complex neuron–glial relationships observed in the brain. Here we present a system that can be used to characterize the intricate relationship between astrocytic processes and synaptic structures in situ using organotypic hippocampal slices, a preparation that retains the three-dimensional architecture of astrocyte–synapse interactions. Using time-lapse confocal imaging, we demonstrate that astrocytes can rapidly extend and retract fine processes to engage and disengage from motile postsynaptic dendritic spines. Surprisingly, astrocytic motility is, on average, higher than its dendritic spine counterparts and likely relies on actin-based cytoskeletal reorganization. Changes in astrocytic processes are typically coordinated with changes in spines, and astrocyte–spine interactions are stabilized at larger spines. Our results suggest that dynamic structural changes in astrocytes help control the degree of neuron–glial communication at hippocampal synapses.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport

Maria A. Carmona; Keith K. Murai; Lei Wang; Amanda J. Roberts; Elena B. Pasquale

Increasing evidence indicates the importance of neuron-glia communication for synaptic function, but the mechanisms involved are not fully understood. We reported that the EphA4 receptor tyrosine kinase is in dendritic spines of pyramidal neurons of the adult hippocampus and regulates spine morphology. We now show that the ephrin-A3 ligand, which is located in the perisynaptic processes of astrocytes, is essential for maintaining EphA4 activation and normal spine morphology in vivo. Ephrin-A3-knockout mice have spine irregularities similar to those observed in EphA4-knockout mice. Remarkably, loss of ephrin-A3 or EphA4 increases the expression of glial glutamate transporters. Consistent with this, glutamate transport is elevated in ephrin-A3-null hippocampal slices whereas Eph-dependent stimulation of ephrin-A3 signaling inhibits glutamate transport. Furthermore, some forms of hippocampus-dependent learning are impaired in the ephrin-A3-knockout mice. Our results suggest that the interaction between neuronal EphA4 and glial ephrin-A3 bidirectionally controls synapse morphology and glial glutamate transport, ultimately regulating hippocampal function.


Journal of Cell Biology | 2007

The EphA4 receptor regulates dendritic spine remodeling by affecting β1-integrin signaling pathways

Caroline Bourgin; Keith K. Murai; Melanie Richter; Elena B. Pasquale

Remodeling of dendritic spines is believed to modulate the function of excitatory synapses. We previously reported that the EphA4 receptor tyrosine kinase regulates spine morphology in hippocampal pyramidal neurons, but the signaling pathways involved were not characterized (Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Nat. Neurosci. 6:153–160). In this study, we show that EphA4 activation by ephrin-A3 in hippocampal slices inhibits integrin downstream signaling pathways. EphA4 activation decreases tyrosine phosphorylation of the scaffolding protein Crk-associated substrate (Cas) and the tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and also reduces the association of Cas with the Src family kinase Fyn and the adaptor Crk. Consistent with this, EphA4 inhibits β1-integrin activity in neuronal cells. Supporting a functional role for β1 integrin and Cas inactivation downstream of EphA4, the inhibition of integrin or Cas function induces spine morphological changes similar to those associated with EphA4 activation. Furthermore, preventing β1-integrin inactivation blocks the effects of EphA4 on spines. Our results support a model in which EphA4 interferes with integrin signaling pathways that stabilize dendritic spines, thus modulating synaptic interactions with the extracellular environment.


Current Biology | 2014

Activity-Dependent Structural Plasticity of Perisynaptic Astrocytic Domains Promotes Excitatory Synapse Stability

Yann Bernardinelli; Jerome Randall; Elia Janett; Irina Nikonenko; Stéphane König; Emma V. Jones; Carmen E. Flores; Keith K. Murai; Christian G. Bochet; Anthony Holtmaat; Dominique Muller

BACKGROUND Excitatory synapses in the CNS are highly dynamic structures that can show activity-dependent remodeling and stabilization in response to learning and memory. Synapses are enveloped with intricate processes of astrocytes known as perisynaptic astrocytic processes (PAPs). PAPs are motile structures displaying rapid actin-dependent movements and are characterized by Ca(2+) elevations in response to neuronal activity. Despite a debated implication in synaptic plasticity, the role of both Ca(2+) events in astrocytes and PAP morphological dynamics remain unclear. RESULTS In the hippocampus, we found that PAPs show extensive structural plasticity that is regulated by synaptic activity through astrocytic metabotropic glutamate receptors and intracellular calcium signaling. Synaptic activation that induces long-term potentiation caused a transient PAP motility increase leading to an enhanced astrocytic coverage of the synapse. Selective activation of calcium signals in individual PAPs using exogenous metabotropic receptor expression and two-photon uncaging reproduced these effects and enhanced spine stability. In vivo imaging in the somatosensory cortex of adult mice revealed that increased neuronal activity through whisker stimulation similarly elevates PAP movement. This in vivo PAP motility correlated with spine coverage and was predictive of spine stability. CONCLUSIONS This study identifies a novel bidirectional interaction between synapses and astrocytes, in which synaptic activity and synaptic potentiation regulate PAP structural plasticity, which in turn determines the fate of the synapse. This mechanism may represent an important contribution of astrocytes to learning and memory processes.


The Neuroscientist | 2004

Eph Receptors, Ephrins, and Synaptic Function

Keith K. Murai; Elena B. Pasquale

Compelling new findings have revealed that receptor tyrosine kinases of the Eph family, along with their ephrin ligands, play an essential role in regulating the properties of developing mature excitatory synapses in the central nervous system. The cell surface localization of both the Eph receptors and the ephrins enables these proteins to signal bidirectionally at sites of cell-to-cell contact, such as synapses. Eph receptors and ephrins have indeed been implicated in multiple aspects of synaptic function, including clustering and modulating N-methyl-D-aspartate receptors, modifying the geometry of postsynaptic terminals, and influencing long-term synaptic plasticity and memory. In this review, we discuss how Eph receptors and ephrins are integrated into the molecular machinery that supports synaptic function.


The Journal of Neuroscience | 2007

EphA4 Signaling Regulates Phospholipase Cγ1 Activation, Cofilin Membrane Association, and Dendritic Spine Morphology

Lei Zhou; Sarah J. Martinez; Michael Haber; Emma V. Jones; David Bouvier; Guy Doucet; Amadou T. Corera; Edward A. Fon; Andreas H. Zisch; Keith K. Murai

Specialized postsynaptic structures known as dendritic spines are the primary sites of glutamatergic innervation at synapses of the CNS. Previous studies have shown that spines rapidly remodel their actin cytoskeleton to modify their shape and this has been associated with changes in synaptic physiology. However, the receptors and signaling intermediates that restructure the actin network in spines are only beginning to be identified. We reported previously that the EphA4 receptor tyrosine kinase regulates spine morphology. However, the signaling pathways downstream of EphA4 that induce spine retraction on ephrin ligand binding remain poorly understood. Here, we demonstrate that ephrin stimulation of EphA4 leads to the recruitment and activation of phospholipase Cγ1 (PLCγ1) in heterologous cells and in hippocampal slices. This interaction occurs through an Src homology 2 domain of PLCγ1 and requires the EphA4 juxtamembrane tyrosines. In the brain, PLCγ1 is found in multiple compartments of synaptosomes and is readily found in postsynaptic density fractions. Consistent with this, PLC activity is required for the maintenance of spine morphology and ephrin-induced spine retraction. Remarkably, EphA4 and PLC activity modulate the association of the actin depolymerizing/severing factor cofilin with the plasma membrane. Because cofilin has been implicated previously in the structural plasticity of spines, this signaling may enable cofilin to depolymerize actin filaments and restructure spines at sites of ephrin–EphA4 contact.


Molecular and Cellular Neuroscience | 2003

Targeting the EphA4 receptor in the nervous system with biologically active peptides

Keith K. Murai; Louis N. Nguyen; Mitchell Koolpe; Rebecca McLennan; Catherine E. Krull; Elena B. Pasquale

EphA4 is a member of the Eph family of receptor tyrosine kinases and has important functions in the developing and adult nervous system. In the adult, EphA4 is enriched in the hippocampus and cortex, two brain structures critical for learning and memory. To identify reagents that can discriminate between the many Eph receptors and selectively target EphA4, we used a phage display approach. We identified three 12-amino acid peptides that preferentially bind to EphA4. Despite lack of a common sequence motif, these peptides compete with each other for binding to EphA4 and antagonize ephrin binding and EphA4 activation at micromolar concentrations, indicating that they bind with high affinity to the ephrin-binding site. Furthermore, one of the peptides perturbs the segmental migration of EphA4-positive neural crest cells in chick trunk organotypic explants. Hence, this peptide can disrupt the physiological function of endogenous EphA4 in situ. We also identified additional peptides that bind to EphA5 and EphA7, two other receptors expressed in the nervous system. This panel of peptides may lead to the development of pharmaceuticals that differentially target Eph receptors to modulate neuronal function in specific regions of the nervous system.

Collaboration


Dive into the Keith K. Murai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Haber

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Guy Doucet

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

David Bouvier

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mustapha Riad

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Sabrina Chierzi

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Charles W. Bourque

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Denise Cook

Montreal General Hospital

View shared research outputs
Top Co-Authors

Avatar

Amadou T. Corera

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge