Sabrina Chierzi
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabrina Chierzi.
The Journal of Neuroscience | 2005
Poonam Verma; Sabrina Chierzi; Amanda M. Codd; Douglas S. Campbell; Ronald L. Meyer; Christine E. Holt; James W. Fawcett
Axonal regeneration can occur within hours of injury, the first step being the formation of a new growth cone. For sensory and retinal axons, regenerative ability in vivo correlates with the potential to form a new growth cone after axotomy in vitro. We show that this ability to regenerate a new growth cone depends on local protein synthesis and degradation within the axon. Axotomy in vitro leads to a fourfold to sixfold increase in 3H-leucine incorporation in both neurones and axons, starting within 10 min and peaking 1 h after axotomy. Application of protein synthesis inhibitors (cycloheximide and anisomycin) to cut axons, including axons whose cell bodies were removed, or proteasome inhibitors (lactacystin and N-acetyl-Nor-Leu-Leu-Al) all result in a reduction in the proportion of transected axons able to reform growth cones. Similar inhibition of growth cone formation was observed on addition of target of rapamycin (TOR), p38 MAPK (mitogen-activated protein kinase), and caspase-3 inhibitors. Comparing retinal and sensory axons of different developmental stages, levels of ribosomal protein P0 and phosphorylated translation initiation factor are high in sensory axons, lower in embryonic axons, and absent in adult retinal axons. Conditioning lesions, which increase the regenerative ability of sensory axons, lead to increases in intra-axonal protein synthetic and degradative machinery both in vitro and in vivo. Collectively, these findings suggest that local protein synthesis and degradation, controlled by various TOR-, p38 MAPK-, and caspase-dependent pathways, underlie growth cone initiation after axotomy.
The Journal of Neuroscience | 1996
Lidia Bonfanti; Enrica Strettoi; Sabrina Chierzi; Maria Cristina Cenni; Xiu-Huai Liu; Jean-Claude Martinou; Lamberto Maffei; Sylvia A. Rabacchi
Approximately half of the retinal ganglion cells (RGCs) present in the rodent retina at birth normally die during early development. Overexpression of the proto-oncogene bcl-2 recently has been shown to rescue some neuronal populations from natural cell death and from degeneration induced by axotomy of nerves within the peripheral nervous system. Here we study in vivo the role of the overexpression of bcl-2 in the natural cell death of RGCs and in the degenerative process induced in these cells by transection of the optic nerve. We find that in newborn bcl-2 transgenic mice, the number of RGCs undergoing natural cell death is considerably lower than in wild-type pups. Consistently, a vast majority (90%) of the ganglion cells found in the retina of neonatal transgenics are maintained in adulthood, whereas only 40% survive in wild-type mice. After transection of the optic nerve, the number of degenerating ganglion cells, determined by counting pyknotic nuclei or nuclei with fragmented DNA, is substantially reduced in transgenic mice. In wild-type animals, almost 50% of ganglion cells degenerate in the 24 hr after the lesion, whereas almost the entire ganglion cell population survives axotomy in transgenic mice. Therefore, overexpression of bcl-2 is effective in preventing degeneration of this neuronal population, raising the possibility that ganglion cells are dependent on the endogenous expression of bcl-2 for survival. The remarkable rescue capacity of bcl-2 overexpression in these neurons makes it an interesting model for studying natural cell death and responses to injury in the CNS.
European Journal of Neuroscience | 2005
Sabrina Chierzi; Gian Michele Ratto; Poonarn Verma; James W. Fawcett
The processes activated at the time of axotomy and leading to the formation of a new growth cone are the first step in regeneration, but are still poorly characterized. We investigated this event in an in vitro model of axotomy performed on dorsal root ganglia and retinal explants. We observed that the dorsal root ganglion axons and retinal ganglion cell axons, which had grown out on a poly d‐lysine/laminin substrate at the time of culture preparation greatly differed in their regenerative response after a subsequent in vitro lesion made far from the cell body. The majority of axons of adult dorsal root ganglia but only a small percentage of axons of adult retinal ganglion cells regenerated new growth cones within four hours after in vitro axotomy, though both kinds of axons were growing before the lesion. The depletion of extracellular calcium and the inhibition of extracellular‐signal regulated kinase 1,2 (ERK) and protein kinase A (PKA) at the time of injury significantly impaired the capacity of dorsal root ganglia axons to re‐initiate growth cones without affecting growth cone motility. Pharmacological treatments directed at increasing the level of cAMP promoted growth cone regeneration in adult retinal ganglion cell axons in spite of the low regenerative potential exhibited in normal conditions. Understanding the cellular mechanisms activated at the time of lesion and leading to the formation of a new growth cone is necessary for devising treatments aimed at enhancing the regenerative response of injured axons.
Current Biology | 2000
Matteo Caleo; Elisabetta Menna; Sabrina Chierzi; Maria Cristina Cenni; Lamberto Maffei
BACKGROUND The neurotrophins, which include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5 and NT-6, are a family of proteins that play fundamental roles in the differentiation, survival and maintenance of peripheral and central neurons. Much research has focused on the role of neurotrophins as target-derived, retrogradely transported trophic molecules. Although there is recent evidence that BDNF and NT-3 can be transported in an anterograde direction along peripheral and central axons, there is as yet no conclusive evidence that these anterograde factors have direct post-synaptic actions. RESULTS We report that BDNF travels in an anterograde direction along the optic nerve. The anterogradely transported BDNF had rapid effects on retinal target neurons in the superior colliculus and lateral geniculate nucleus of the brain. When endogenous BDNF within the developing superior colliculus was neutralised, the rate of programmed neuronal death increased. Conversely, provision of an afferent supply of BDNF prevented the degeneration of geniculate neurons after removal of their cortical target. CONCLUSIONS BDNF released from retinal ganglion cells acts as a survival factor for post-synaptic neurons in retinal target fields.
Nature Communications | 2013
L. De Vivo; Silvia Landi; M. Panniello; Laura Baroncelli; Sabrina Chierzi; L. Mariotti; Maria Spolidoro; Tommaso Pizzorusso; Lamberto Maffei; Gian Michele Ratto
Brain cells are immersed in a complex structure forming the extracellular matrix. The composition of the matrix gradually matures during postnatal development, as the brain circuitry reaches its adult form. The fully developed extracellular environment stabilizes neuronal connectivity and decreases cortical plasticity as highlighted by the demonstration that treatments degrading the matrix are able to restore synaptic plasticity in the adult brain. The mechanisms through which the matrix inhibits cortical plasticity are not fully clarified. Here we show that a prominent component of the matrix, chondroitin sulfate proteoglycans (CSPGs), restrains morphological changes of dendritic spines in the visual cortex of adult mice. By means of in vivo and in vitro two-photon imaging and electrophysiology, we find that after enzymatic digestion of CSPGs, cortical spines become more motile and express a larger degree of structural and functional plasticity.
The Journal of Neuroscience | 2011
Emma V. Jones; Yann Bernardinelli; Yiu Chung Tse; Sabrina Chierzi; Tak Pan Wong; Keith K. Murai
Neurons recruit numerous mechanisms to facilitate the development of synaptic connections. However, little is known about activity-dependent mechanisms that control the timing and fidelity of this process. Here we describe a novel pathway used by neurons to regulate glutamate receptors at maturing central synapses. This pathway relies on communication between neurons and astrocytes and the ability of astrocytes to release the factor SPARC (secreted protein, acidic and rich in cysteine). SPARC expression is dynamically regulated and plays a critical role in determining the level of synaptic AMPARs. SPARC ablation in mice increases excitatory synapse function, causes an abnormal accumulation of surface AMPARs at synapses, and impairs synaptic plasticity during development. We further demonstrate that SPARC inhibits the properties of neuronal β3-integrin complexes, which are intimately coupled to AMPAR stabilization at synapses. Thus neuron–glial signals control glutamate receptor levels at developing synapses to enable activity-driven modifications of synaptic strength.
The Journal of Neuroscience | 2011
Khizr I. Rathore; Jennifer L. Berard; Adriana Redensek; Sabrina Chierzi; Rubèn López-Vales; Manuela Santos; Shizuo Akira; Samuel David
Lipocalin 2 (Lcn2) plays an important role in defense against bacterial infection by interfering with bacterial iron acquisition. Although Lcn2 is expressed in a number of aseptic inflammatory conditions, its role in these conditions remains unclear. We examined the expression and role of Lcn2 after spinal cord injury (SCI) in adult mice by using a contusion injury model. Lcn2 expression at the protein level is rapidly increased 12-fold at 1 d after SCI and decreases gradually thereafter, being three times as high as control levels at 21 d after injury. Lcn2 expression is strongly induced after contusion injury in astrocytes, neurons, and neutrophils. The Lcn2 receptor (Lcn2R), which has been shown to influence cell survival, is also expressed after SCI in the same cell types. Lcn2-deficient (Lcn2−/−) mice showed significantly better locomotor recovery after spinal cord contusion injury than wild-type (Lcn2+/+) mice. Histological assessments indicate improved neuronal and tissue survival and greater sparing of myelin in Lcn2−/− mice after contusion injury. Flow cytometry showed a decrease in neutrophil influx and a small increase in the monocyte population in Lcn2−/− injured spinal cords. This change was accompanied by a reduction in the expression of several pro-inflammatory chemokines and cytokines as well as inducible nitric oxide synthase early after SCI in Lcn2−/− mice compared with wild-type animals. Our results, therefore, suggest a role for Lcn2 in regulating inflammation in the injured spinal cord and that lack of Lcn2 reduces secondary damage and improves locomotor recovery after spinal cord contusion injury.
PLOS ONE | 2007
Alessandro Sale; Maria Cristina Cenni; Francesca Ciucci; Elena Putignano; Sabrina Chierzi; Lamberto Maffei
The influence of maternal environment on fetal development is largely unexplored, the available evidence concerns only the deleterious effects elicited by prenatal stress. Here we investigated the influence of prenatal enrichment on the early development of the visual system in the fetus. We studied the anatomical development of the rat retina, by analyzing the migration of neural progenitors and the process of retinal ganglion cell death, which exerts a key role in sculpturing the developing retinal system at perinatal ages. The number of apoptotic cells in the retinal ganglion cell layer was analyzed using two distinct methods: the presence of pyknotic nuclei stained for cresyl violet and the appearance of DNA fragmentation (Tunel method). We report that environmental enrichment of the mother during pregnancy affects the structural maturation of the retina, accelerating the migration of neural progenitors and the dynamics of natural cell death. These effects seem to be under the control of insulin-like growth factor-I: its levels, higher in enriched pregnant rats and in their milk, are increased also in their offspring, its neutralization abolishes the action of maternal enrichment on retinal development and chronic insulin-like growth factor-I injection to standard-reared females mimics the effects of enrichment in the fetuses. Thus, the development of the visual system is sensitive to environmental stimulation during prenatal life. These findings could have a bearing in orienting clinical research in the field of prenatal therapy.
Vision Research | 1998
Sabrina Chierzi; Maria Cristina Cenni; Lamberto Maffei; Tommaso Pizzorusso; Vittorio Porciatti; Gian Michele Ratto; Enrica Strettoi
Multicellular organisms face the necessity of removing superfluous or injured cells during normal development, tissue turn-over and in response to damaging conditions. These finalised killings occur throughout a process, commonly called programmed cell death (PCD), which is placed under strict cellular control. PCD is regulated by the products of the expression of a number of genes. This fact raises the intriguing possibility of inhibiting such degenerative processes by operating on some of the controlling genes. Central neurons of transgenic mice overexpressing bcl-2, a powerful inhibitor of PCD, are remarkably resistant to degeneration induced by noxious stimuli. We have explored the ate of retinal ganglion cells and of their axons, when such transgenic animals have been challenged by a lesion of the optic nerve. These results have direct bearing on the possibility of attaining functional restoration of the injured pathway.
Science | 2002
Tommaso Pizzorusso; Paolo Medini; Nicoletta Berardi; Sabrina Chierzi; James W. Fawcett; Lamberto Maffei