Keith Riccardi
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keith Riccardi.
Journal of Pharmacokinetics and Pharmacodynamics | 2014
Rui Li; Hugh A. Barton; Phillip Yates; Avijit Ghosh; Angela Wolford; Keith Riccardi; Tristan S. Maurer
Physiologically based pharmacokinetic (PBPK) models provide a framework useful for generating credible human pharmacokinetic predictions from data available at the earliest, preclinical stages of pharmaceutical research. With this approach, the pharmacokinetic implications of in vitro data are contextualized via scaling according to independent physiological information. However, in many cases these models also require model-based estimation of additional empirical scaling factors (SFs) in order to accurately recapitulate known human pharmacokinetic behavior. While this practice clearly improves data characterization, the introduction of empirically derived SFs may belie the extrapolative power commonly attributed to PBPK. This is particularly true when such SFs are compound dependent and/or when there are issues with regard to identifiability. As such, when empirically-derived SFs are necessary, a critical evaluation of parameter estimation and model structure are prudent. In this study, we applied a global optimization method to support model-based estimation of a single set of empirical SFs from intravenous clinical data on seven OATP substrates within the context of a previously published PBPK model as well as a revised PBPK model. The revised model with experimentally measured unbound fraction in liver, permeability between liver compartments, and permeability limited distribution to selected tissues improved data characterization. We utilized large-sample approximation and resampling approaches to estimate confidence intervals for the revised model in support of forward predictions that reflect the derived uncertainty. This work illustrates an objective approach to estimating empirically-derived SFs, systematically refining PBPK model performance and conveying the associated confidence in subsequent forward predictions.
Journal of Pharmaceutical Sciences | 2015
Keith Riccardi; Shannon Cawley; Phillip Yates; Cheng Chang; Carrie Funk; Mark Niosi; Jian Lin; Li Di
Accurately determining fraction unbound (fu ) with currently available methods has been challenging for certain compounds. Inaccurate fu values can lead to the misinterpretation of important attributes of a drug candidate. Our analysis of over 2000 Pfizer drug discovery compounds showed no systematic bias in low or high fu precision using the equilibrium dialysis method. However, the accuracy of the plasma protein binding (PPB) estimate for highly bound compounds may be poor, should equilibrium not be fully achieved in the equilibrium dialysis assay. Here, a dilution method and a presaturation method were applied to accelerate equilibration for a set of challenging compounds. These improved methods demonstrate the ability to provide an accurate measurement of PPB for highly bound compounds with fu values much less than 1%. Therefore, we recommend that the actual experimental fu value be used for the prediction of drug-drug interaction potential and for the characterization of important drug candidate properties. Our recommendation calls into question the need for current regulatory guidelines that restrict the reporting of fu values below 1%.
Scientific Reports | 2015
Kim Huard; Janice A. Brown; Jessica E. C. Jones; Shawn Cabral; Kentaro Futatsugi; Matthew Gorgoglione; Adhiraj Lanba; Nicholas B. Vera; Yimin Zhu; Qingyun Yan; Yingjiang Zhou; Cecile Vernochet; Keith Riccardi; Angela Wolford; David Pirman; Mark Niosi; Gary E. Aspnes; Michael Herr; Nathan E. Genung; Thomas V. Magee; Daniel P. Uccello; Paula M. Loria; Li Di; James R. Gosset; David Hepworth; Timothy P. Rolph; Jeffrey A. Pfefferkorn; Derek M. Erion
Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.
Bioorganic & Medicinal Chemistry Letters | 2009
Mary Theresa Didiuk; David A. Griffith; John William Benbow; Kevin K.-C. Liu; Daniel P. Walker; F. Christopher Bi; Joel Morris; Angel Guzman-Perez; Hua Gao; Bruce M. Bechle; Ryan M. Kelley; Xiaojing Yang; Kenneth J. DiRico; Syed Ahmed; William M. Hungerford; Joseph DiBrinno; Michael P. Zawistoski; Scott W. Bagley; Jianke Li; Yuan Zeng; Stephanie Santucci; Robert M. Oliver; Matthew Corbett; Thanh V. Olson; Chiliu Chen; Mei Li; Vishwas M. Paralkar; Keith Riccardi; David R. Healy; Amit S. Kalgutkar
Synthesis and structure-activity relationship (SAR) studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones, a novel class of calcium receptor antagonists is described with particular emphasis on optimization of the pharmacokinetic/pharmacodynamic parameters required for a short duration of action compound. Orally-active compounds were identified which displayed the desired animal pharmacology (rapid and transient stimulation of parathyroid hormone) essential for bone anabolic effects.
ACS Medicinal Chemistry Letters | 2010
James A. Southers; Jonathan N. Bauman; David A. Price; Paul S. Humphries; Gayatri Balan; John F. Sagal; Tristan S. Maurer; Yan Zhang; Robert M. Oliver; Michael Herr; David R. Healy; Mei Li; Brendon Kapinos; Gwendolyn Fate; Keith Riccardi; Vishwas M. Paralkar; Thomas A. Brown; Amit S. Kalgutkar
As part of a strategy to deliver short-acting calcium-sensing receptor (CaSR) antagonists, the metabolically labile thiomethyl functionality was incorporated into the zwitterionic amino alcohol derivative 3 with the hope of increasing human clearance through oxidative metabolism, while delivering a pharmacologically inactive sulfoxide metabolite. The effort led to the identification of thioanisoles 22 and 23 as potent and orally active CaSR antagonists with a rapid onset of action and short pharmacokinetic half-lives, which led to a rapid and transient stimulation of parathyroid hormone in a dose-dependent fashion following oral administration to rats. On the basis of the balance between target pharmacology, safety, and human disposition profiles, 22 and 23 were advanced as clinical candidates for the treatment of osteoporosis.
Drug Metabolism and Disposition | 2016
Keith Riccardi; Zhenhong Li; Janice A. Brown; Matthew Gorgoglione; Mark Niosi; James R. Gosset; Kim Huard; Derek M. Erion; Li Di
Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems.
Drug Metabolism and Disposition | 2017
Keith Riccardi; Jian Lin; Zhenhong Li; Mark Niosi; Sangwoo Ryu; Wenyi Hua; Karen Atkinson; Rachel E. Kosa; John Litchfield; Li Di
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is of great importance to estimate unbound liver concentration, develop PK/PD relationships, predict efficacy and toxicity in the liver, and model the drug-drug interaction potential for drugs that are asymmetrically distributed into the liver. A novel in vitro method has been developed to predict in vivo Kpuu with good accuracy using cryopreserved suspension hepatocytes in InVitroGRO HI media with 4% BSA. Validation was performed using six OATP substrates with rat in vivo Kpuu data from i.v. infusion studies where a steady state was achieved. Good in vitro-in vivo correlation (IVIVE) was observed as the in vitro Kpuu values were mostly within 2-fold of in vivo Kpuu. Good Kpuu IVIVE in human was also observed with in vivo Kpuu data of dehydropravastatin from positron emission tomography and in vivo Kpuu data from PK/PD modeling for pravastatin and rosuvastatin. Under the specific Kpuu assay conditions, the drug-metabolizing enzymes and influx/efflux transporters appear to function at physiologic levels. No scaling factors are necessary to predict in vivo Kpuu from in vitro data. The novel in vitro Kpuu method provides a useful tool in drug discovery to project in vivo Kpuu.
Drug Metabolism and Disposition | 2018
Rui Li; Mark Niosi; Nathaniel Johnson; David A. Tess; Emi Kimoto; Jian Lin; Xin Yang; Keith Riccardi; Sangwoo Ryu; Ayman El-Kattan; Tristan S. Maurer; Larry M. Tremaine; Li Di
Understanding liver exposure of hepatic transporter substrates in clinical studies is often critical, as it typically governs pharmacodynamics, drug-drug interactions, and toxicity for certain drugs. However, this is a challenging task since there is currently no easy method to directly measure drug concentration in the human liver. Using bosentan as an example, we demonstrate a new approach to estimate liver exposure based on observed systemic pharmacokinetics from clinical studies using physiologically based pharmacokinetic modeling. The prediction was verified to be both accurate and precise using sensitivity analysis. For bosentan, the predicted pseudo steady-state unbound liver-to-unbound systemic plasma concentration ratio was 34.9 (95% confidence interval: 4.2, 50). Drug-drug interaction (i.e., CYP3A and CYP2B6 induction) and inhibition of hepatic transporters (i.e., bile salt export pump, multidrug resistance-associated proteins, and sodium-taurocholate cotransporting polypeptide) were predicted based on the estimated unbound liver tissue or plasma concentrations. With further validation and refinement, we conclude that this approach may serve to predict human liver exposure and complement other methods involving tissue biopsy and imaging.
Xenobiotica | 2017
Cheng Chang; Xin Yang; Odette A. Fahmi; Keith Riccardi; Li Di; R. Scott Obach
Abstract 1. Induction is an important mechanism contributing to drug–drug interactions. It is most commonly evaluated in the human hepatocyte assay over 48-h or 72-h incubation period. However, whether the overall exposure (i.e. Area Under the Curve (AUC) or Cave) or maximum exposure (i.e. Cmax) of the inducer is responsible for the magnitude of subsequent induction has not been thoroughly investigated. Additionally, in vitro induction assays are typically treated as static systems, which could lead to inaccurate induction potency estimation. Hence, European Medicines Agency (EMA) guidance now specifies quantitation of drug levels in the incubation. 2. This work treated the typical in vitro evaluation of rifampin induction as an in vivo system by generating various target engagement profiles, measuring free rifampin concentration over 3 d of incubation and evaluating the impact of these factors on final induction response. 3. This rifampin-based analysis demonstrates that the induction process is driven by time-averaged target engagement (i.e. AUC-driven). Additionally, depletion of rifampin in the incubation medium over 3 d as well as non-specific/specific binding were observed. 4. These findings should help aid the discovery of clinical candidates with minimal induction liability and further expand our knowledge in the quantitative translatability of in vitro induction assays.
Drug Metabolism and Disposition | 2018
Keith Riccardi; Sangwoo Ryu; Jian Lin; Phillip Yates; David A. Tess; Rui Li; Dhirender Singh; Brian Holder; Brendon Kapinos; George Chang; Li Di
Fraction unbound (fu) of liver tissue, hepatocytes, and other cell types is an essential parameter used to estimate unbound liver drug concentration and intracellular free drug concentration. fu,liver and fu,cell are frequently measured in multiple species and cell types in drug discovery and development for various applications. A comparison study of 12 matrices for fu,liver and fu,cell of hepatocytes in five different species (mouse, rat, dog, monkey, and human), as well as fu,cell of Huh7 and human embryonic kidney 293 cell lines, was conducted for 22 structurally diverse compounds with the equilibrium dialysis method. Using an average bioequivalence approach, our results show that the average difference in binding to liver tissue, hepatocytes, or different cell types was within 2-fold of that of the rat fu,liver. Therefore, we recommend using rat fu,liver as a surrogate for liver binding in other species and cell types in drug discovery. This strategy offers the potential to simplify binding studies and reduce cost, thereby enabling a more effective and practical determination of fu for liver tissues, hepatocytes, and other cell types. In addition, fu under hepatocyte stability incubation conditions should not be confused with fu,cell, as one is a diluted fu and the other is an undiluted fu. Cell density also plays a critical role in the accurate measurement of fu,cell.