Kelly G. Pennell
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly G. Pennell.
Environmental Science & Technology | 2011
Jingyu Liu; Kelly G. Pennell; Robert H. Hurt
Among the many new engineered nanomaterials, nanosilver is one of the highest priority cases for environmental risk assessment. Recent analysis of field samples from water treatment facilities suggests that silver is converted to silver sulfide, whose very low solubility may limit the bioavailability and adverse impact of silver in the environment. The present study demonstrates that silver nanoparticles react with dissolved sulfide species (H(2)S, HS(-)) under relevant but controlled laboratory conditions to produce silver sulfide nanostructures similar to those observed in the field. The reaction is tracked by time-resolved sulfide depletion measurements to yield quantitative reaction rates and stoichiometries. The reaction requires dissolved oxygen, and it is sensitive to pH and natural organic matter. Focused-ion-beam analysis of surface films reveals an irregular coarse-grained sulfide phase that allows deep (>1 μm) conversion of silver surfaces without passivation. At high sulfide concentrations, nanosilver oxysulfidation occurs by a direct particle-fluid reaction. At low sulfide concentration, quantitative kinetic analysis suggests a mechanistic switch to an oxidative dissolution/precipitation mechanism, in which the biologically active Ag(+) ion is generated as an intermediate. The environmental transformation pathways for nanosilver will vary depending on the media-specific competing rates of oxidative dissolution and direct oxysulfidation.
Journal of The Air & Waste Management Association | 2009
Kelly G. Pennell; Ozgur Bozkurt; Eric M. Suuberg
Abstract Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings.
Environmental Science & Technology | 2013
Yijun Yao; Rui Shen; Kelly G. Pennell; Eric M. Suuberg
A complete vapor intrusion (VI) model, describing vapor entry of volatile organic chemicals (VOCs) into buildings located on contaminated sites, generally consists of two main parts: one part describing vapor transport in the soil and the other describing its entry into the building. Modeling the soil vapor transport part involves either analytically or numerically solving the equations of vapor advection and diffusion in the subsurface. Contaminant biodegradation must often also be included in this simulation, and can increase the difficulty of obtaining a solution, especially when explicitly considering coupled oxygen transport and consumption. The models of contaminant building entry pathway are often coupled to calculations of indoor air contaminant concentration, and both are influenced by building construction and operational features. The description of entry pathway involves consideration of building foundation characteristics, while calculation of indoor air contaminant levels requires characterization of building enclosed space and air exchange within this. This review summarizes existing VI models, and discusses the limits of current screening tools commonly used in this field.
Environmental Science & Technology | 2011
Yijun Yao; Rui Shen; Kelly G. Pennell; Eric M. Suuberg
The Johnson-Ettinger vapor intrusion model (J-E model) is the most widely used screening tool for evaluating vapor intrusion potential because of its simplicity and convenience of use. Since its introduction about twenty years ago, the J-E model has become a cornerstone in guidance related to the potential for significant vapor intrusion-related exposures. A few papers have been published that claim it is a conservative predictor of exposure, but there has not been a systematic comparison in the open literature of the J-E model predictions with the results of more complete full three-dimensional descriptions of the phenomenon. In this paper, predictions from a three-dimensional model of vapor intrusion, based upon finite element calculations of homogeneous soil scenarios, are directly compared with the results of the J-E model. These results suggest that there are conditions under which the J-E model predictions might be quite reasonable but that there are also others in which the predictions are low as well as high. Some small modifications to the J-E model are also suggested that can bring its predictions into excellent agreement with those of the much more elaborate 3-D models, in some specific cases of homogeneous soils. Finally, both models were compared with actual field data.
Journal of Hazardous Materials | 2012
Yijun Yao; Kelly G. Pennell; Eric M. Suuberg
This study is concerned with developing a method to estimate subslab perimeter crack contaminant concentration for structures built atop a vapor source. A simple alternative to the widely-used but restrictive one-dimensional (1-D) screening models is presented and justified by comparing to predictions from a three-dimensional (3-D) CFD model. A series of simulations were prepared for steady-state transport of a non-biodegradable contaminant in homogenous soil for different structure construction features and site characteristics. The results showed that subslab concentration does not strongly depend on the soil diffusivity, indoor air pressure, or foundation footprint size. It is determined by the geometry of the domain, represented by a characteristic length which is the ratio of foundation depth to source depth. An extension of this analytical approximation was developed for multi-layer soil cases.
Environmental Science & Technology | 2013
Yijun Yao; Rui Shen; Kelly G. Pennell; Eric M. Suuberg
Those charged with the responsibility of estimating the risk posed by vapor intrusion (VI) processes have often looked to information contained in the U.S. Environmental Protection Agency (EPA)s VI database for insight. Indoor air concentration attenuation factors have always been a key focus of this database, but the roles of different environmental factors in these attenuation processes are still unclear. This study aims to examine the influences of these factors in the context of the information in the VI database. The database shows that the attenuation factors vary over many orders of magnitude and that no simple statistical fluctuation around any typical mean value exists. Thus far, no simple explanation of this phenomenon has been presented. This paper examines various possible contributing factors to the enormous range of observed values, looking at which ones can plausibly contribute to explaining them.
Environmental Toxicology and Chemistry | 2009
Robert M. Burgess; Monique M. Perron; Carey L. Friedman; Eric M. Suuberg; Kelly G. Pennell; Mark G. Cantwell; Marguerite C. Pelletier; Kay T. Ho; Jonathan R. Serbst; Stephan A. Ryba
Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.
Environmental Toxicology and Chemistry | 2013
Monique M. Perron; Robert M. Burgess; Eric M. Suuberg; Mark G. Cantwell; Kelly G. Pennell
Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants.
Science of The Total Environment | 2012
Rui Shen; Kelly G. Pennell; Eric M. Suuberg
The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining the vapor intrusion risk. In addition, soil organic carbon retarded the transport process, and damped the contaminant concentration fluctuations.
Vadose Zone Journal | 2013
Yijun Yao; Rui Shen; Kelly G. Pennell; Eric M. Suuberg
Most current vapor-intrusion screening models employ the assumption of a subsurface homogenous source distribution, and groundwater data obtained from nearby monitoring wells are usually taken to reflect the source concentration for several nearby buildings. This practice makes it necessary to consider the possible influence of lateral source-building separation. In this study, a new way to estimate subslab (nonbiodegradable) contaminant concentration is introduced that includes the influence of source offset with the help of a conformal transform technique. Results from this method are compared with those from a three-dimensional numerical model. Based on this newly developed method, a possible explanation is provided here for the great variation in the attenuation factors of the soil vapor concentrations of groundwater-to-subslab contaminants found in the EPA vapor-intrusion database.