Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy B. Stockwell is active.

Publication


Featured researches published by Timothy B. Stockwell.


PLOS Biology | 2007

The Diploid Genome Sequence of an Individual Human

Samuel Levy; Granger Sutton; Pauline C. Ng; Lars Feuk; Aaron L. Halpern; Brian Walenz; Nelson Axelrod; Jiaqi Huang; Ewen F. Kirkness; Gennady Denisov; Yuan Lin; Jeffrey R. MacDonald; Andy Wing Chun Pang; Mary Shago; Timothy B. Stockwell; Alexia Tsiamouri; Vineet Bafna; Vikas Bansal; Saul Kravitz; Dana Busam; Karen Beeson; Tina McIntosh; Karin A. Remington; Josep F. Abril; John Gill; Jon Borman; Yu-Hui Rogers; Marvin Frazier; Stephen W. Scherer; Robert L. Strausberg

Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.


Science | 2008

Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome

Daniel G. Gibson; Gwynedd A. Benders; Cynthia Andrews-Pfannkoch; Evgeniya A. Denisova; Holly Baden-Tillson; Jayshree Zaveri; Timothy B. Stockwell; Anushka Brownley; David W. Thomas; Mikkel A. Algire; Chuck Merryman; Lei Young; Vladimir N. Noskov; John I. Glass; J. Craig Venter; Clyde A. Hutchison; Hamilton O. Smith

We have synthesized a 582,970–base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted “watermarks” at intergenic sites known to tolerate transposon insertions. Overlapping “cassettes” of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb (“1/8 genome”), and 144 kb (“1/4 genome”), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.


PLOS Genetics | 2007

Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells

Yann Marcy; Thomas Ishoey; Roger S. Lasken; Timothy B. Stockwell; Brian Walenz; Aaron L. Halpern; Karen Beeson; Susanne M. D. Goldberg; Stephen R. Quake

Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-μl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.


PLOS Pathogens | 2010

Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.

Lance D. Eckerle; Michelle M. Becker; Rebecca A. Halpin; Kelvin Li; Eli Venter; Xiaotao Lu; Sana Scherbakova; Rachel L. Graham; Ralph S. Baric; Timothy B. Stockwell; David J. Spiro; Mark R. Denison

Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans.

Justin Bahl; Martha I. Nelson; Kwok Hung Chan; Rubing Chen; Dhanasekaran Vijaykrishna; Rebecca A. Halpin; Timothy B. Stockwell; Xudong Lin; David E. Wentworth; Elodie Ghedin; Yi Guan; J. S. Malik Peiris; Steven Riley; Andrew Rambaut; Edward C. Holmes; Gavin J. D. Smith

Populations of seasonal influenza virus experience strong annual bottlenecks that pose a considerable extinction risk. It has been suggested that an influenza source population located in tropical Southeast or East Asia seeds annual temperate epidemics. Here we investigate the seasonal dynamics and migration patterns of influenza A H3N2 virus by analysis of virus samples obtained from 2003 to 2006 from Australia, Europe, Japan, New York, New Zealand, Southeast Asia, and newly sequenced viruses from Hong Kong. In contrast to annual temperate epidemics, relatively low levels of relative genetic diversity and no seasonal fluctuations characterized virus populations in tropical Southeast Asia and Hong Kong. Bayesian phylogeographic analysis using discrete temporal and spatial characters reveal high rates of viral migration between urban centers tested. Although the virus population that migrated between Southeast Asia and Hong Kong persisted through time, this was dependent on virus input from temperate regions and these tropical regions did not maintain a source for annual H3N2 influenza epidemics. We further show that multiple lineages may seed annual influenza epidemics, and that each region may function as a potential source population. We therefore propose that the global persistence of H3N2 influenza A virus is the result of a migrating metapopulation in which multiple different localities may seed seasonal epidemics in temperate regions in a given year. Such complex global migration dynamics may confound control efforts and contribute to the emergence and spread of antigenic variants and drug-resistant viruses.


The Journal of Infectious Diseases | 2011

Deep Sequencing Reveals Mixed Infection with 2009 Pandemic Influenza A (H1N1) Virus Strains and the Emergence of Oseltamivir Resistance

Elodie Ghedin; Jennifer Laplante; Jay V. DePasse; David E. Wentworth; Roberto P. Santos; Martha L. Lepow; Joanne Porter; Kathleen A. Stellrecht; Xudong Lin; Darwin Operario; Sara B. Griesemer; Adam Fitch; Rebecca A. Halpin; Timothy B. Stockwell; David J. Spiro; Edward C. Holmes; Kirsten St. George

Mixed infections with seasonal influenza A virus strains are a common occurrence and an important source of genetic diversity. Prolonged viral shedding, as observed in immunocompromised individuals, can lead to mutational accumulation over extended periods. Recently, drug resistance was reported in immunosuppressed patients infected with the 2009 pandemic influenza A (H1N1) virus within a few days after oseltamivir treatment was initiated. To better understand the evolution and emergence of drug resistance in these circumstances, we used a deep sequencing approach to survey the viral population from an immunosuppressed patient infected with H1N1/2009 influenza and treated with neuraminidase inhibitors. This patient harbored 3 genetic variants from 2 phylogenetically distinct viral clades of pandemic H1N1/2009, strongly suggestive of mixed infection. Strikingly, one of these variants also developed drug resistance de novo in response to oseltamivir treatment. Immunocompromised individuals may, therefore, constitute an important source of genetic and phenotypic diversity, both through mixed infection and de novo mutation.


Ecology Letters | 2012

Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds.

Tommy Tsan-Yuk Lam; Hon S. Ip; Elodie Ghedin; David E. Wentworth; Rebecca A. Halpin; Timothy B. Stockwell; David J. Spiro; Robert J. Dusek; James B. Bortner; Jenny Hoskins; Bradley D. Bales; Dan R. Yparraguirre; Edward C. Holmes

Despite the importance of migratory birds in the ecology and evolution of avian influenza virus (AIV), there is a lack of information on the patterns of AIV spread at the intra-continental scale. We applied a variety of statistical phylogeographic techniques to a plethora of viral genome sequence data to determine the strength, pattern and determinants of gene flow in AIV sampled from wild birds in North America. These analyses revealed a clear isolation-by-distance of AIV among sampling localities. In addition, we show that phylogeographic models incorporating information on the avian flyway of sampling proved a better fit to the observed sequence data than those specifying homogeneous or random rates of gene flow among localities. In sum, these data strongly suggest that the intra-continental spread of AIV by migratory birds is subject to major ecological barriers, including spatial distance and avian flyway.


Journal of Virology | 2013

Sequence Analysis of In Vivo Defective Interfering-Like RNA of Influenza A H1N1 Pandemic Virus

Kazima Saira; Xudong Lin; Jay V. DePasse; Rebecca A. Halpin; Alan Twaddle; Timothy B. Stockwell; Brian Angus; Alessandro Cozzi-Lepri; Marina Delfino; Vivien G. Dugan; Dominic E. Dwyer; Matthew S. Freiberg; Andrzej Horban; Marcelo Losso; Ruth Lynfield; Deborah Wentworth; Edward C. Holmes; Richard T. Davey; David E. Wentworth; Elodie Ghedin

ABSTRACT Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI particles have been reported primarily as a phenomenon of cell culture and in experimentally infected embryonated chicken eggs. They have also been isolated from a respiratory infection of chickens. Using a sequencing approach, we characterize several subgenomic viral RNAs from human nasopharyngeal specimens infected with the influenza A(H1N1)pdm09 virus. The distribution of these in vivo-derived DI-like RNAs was similar to that of in vitro DIs, with the majority of the defective RNAs generated from the PB2 (segment 1) of the polymerase complex, followed by PB1 and PA. The lengths of the in vivo-derived DI-like segments also are similar to those of known in vitro DIs, and the in vivo-derived DI-like segments share internal deletions of the same segments. The presence of identical DI-like RNAs in patients linked by direct contact is compatible with transmission between them. The functional role of DI-like RNAs in natural infections remains to be established.


PLOS ONE | 2011

Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse.

Jihui Ping; Liya Keleta; Nicole E. Forbes; Samar K Dankar; Stecho W; Shaun Tyler; Yan Zhou; Lorne Babiuk; Hana Weingartl; Rebecca A. Halpin; Alex Boyne; Jayati Bera; Jessicah Hostetler; Nadia Fedorova; Katie Proudfoot; Dan A. Katzel; Timothy B. Stockwell; Elodie Ghedin; David J. Spiro; Earl G. Brown

Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20–21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.


Nature Genetics | 2016

Quantifying influenza virus diversity and transmission in humans.

Leo Lit Man Poon; Timothy Song; Roni Rosenfeld; Xudong Lin; Matthew B. Rogers; Bin Zhou; Robert Sebra; Rebecca A. Halpin; Yi Guan; Alan Twaddle; Jay V. DePasse; Timothy B. Stockwell; David E. Wentworth; Edward C. Holmes; Benjamin D. Greenbaum; J. S. M. Peiris; Benjamin J. Cowling; Elodie Ghedin

Influenza A virus is characterized by high genetic diversity. However, most of what is known about influenza evolution has come from consensus sequences sampled at the epidemiological scale that only represent the dominant virus lineage within each infected host. Less is known about the extent of within-host virus diversity and what proportion of this diversity is transmitted between individuals. To characterize virus variants that achieve sustainable transmission in new hosts, we examined within-host virus genetic diversity in household donor-recipient pairs from the first wave of the 2009 H1N1 pandemic when seasonal H3N2 was co-circulating. Although the same variants were found in multiple members of the community, the relative frequencies of variants fluctuated, with patterns of genetic variation more similar within than between households. We estimated the effective population size of influenza A virus across donor-recipient pairs to be approximately 100–200 contributing members, which enabled the transmission of multiple lineages, including antigenic variants.

Collaboration


Dive into the Timothy B. Stockwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Wentworth

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Xudong Lin

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Nadia Fedorova

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Suman R. Das

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhou

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelvin Li

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge