Ken Yoshimura
Sumitomo Chemical
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ken Yoshimura.
Nature Communications | 2013
Jingbi You; Letian Dou; Ken Yoshimura; Takehito Kato; Kenichiro Ohya; T. Moriarty; Keith Emery; Chun-Chao Chen; Jing Gao; Gang Li; Yang Yang
An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.
Advanced Materials | 2014
Chun-Chao Chen; Wei-Hsuan Chang; Ken Yoshimura; Kenichiro Ohya; Jingbi You; Jing Gao; Zirou Hong; Yang Yang
Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4 to 1.9 eV. Through optical modeling, balanced photon absorption rates are achieved and, thereby, the photo-currents are matched among the three subcells. Accordingly, an efficient triple-junction tandem organic solar cell can exhibit a record-high PCE of 11.5%.
Advanced Materials | 2013
Jingbi You; Chun-Chao Chen; Ziruo Hong; Ken Yoshimura; Kenichiro Ohya; Run Xu; Shenglin Ye; Jing Gao; Gang Li; Yang Yang
Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency.
Macromolecules | 2013
Letian Dou; Chun-Chao Chen; Ken Yoshimura; Kenichiro Ohya; Wei-Hsuan Chang; Jing Gao; Yongsheng Liu; Eric Richard; Yang Yang
We describe the detailed synthesis and characterization of an electron-rich building block, dithienopyran (DTP), and its application as a donor unit in lowbandgap conjugated polymers. The electron-donating property of the DTP unit was found to be the strongest among the most frequently used donor units such as benzodithiophene (BDT) or cyclopentadithiophene (CPDT) units. When the DTP unit was polymerized with the strongly electron-deficient difluorobenzothiadiazole (DFBT) unit, a regiorandom polymer (PDTP−DFBT, bandgap = 1.38 eV) was obtained. For comparison with the DTP unit, polymers containing alternating benzodithiophene (BDT) or cyclopentadithiophene (CPDT) units and the DFBT unit were synthesized (PBDT−DFBT and PCPDT−DFBT). We found that the DTP based polymer PDTP−DFBT shows significantly improved solubility and processability compared to the BDT or CPDT based polymers. Consequently, very high molecular weight and soluble PDTP−DFBT can be obtained with less bulky side chains. Interestingly, PDTP−DFBT shows excellent performance in bulk-heterojunction solar cells with power conversion efficiencies reaching 8.0%, which is significantly higher than PBDT−DFBT and PCPDT−DFBT based devices. This study demonstrates that DTP is a promising building block for high-performance solar cell materials.
Polymer Chemistry | 2013
Junpei Kuwabara; Yuta Nohara; Seong Jib Choi; Yohei Fujinami; Wei Lu; Ken Yoshimura; Jun Oguma; Katsuhiro Suenobu; Takaki Kanbara
Direct arylation polycondensation reactions using a simple catalytic system gave eight kinds of bithiophene-based alternating copolymers. The conditions for the reactions of 3,3′,4,4′-tetramethylbithiophene with dibromoarylenes were optimized to obtain high-molecular-weight polymers without formation of cross-linked structures. In the reaction of a dibromoarylene containing a reactive C–H bond, a short reaction time (1.5 h) was suitable for preventing side reactions. In contrast, a long reaction time (6 h) gave high-molecular-weight polymers from dibromoarylene monomers without a reactive C–H bond. This polycondensation reaction enables the synthesis of polymers containing dye structures such as diketopyrrolopyrrole and isoindigo, which are applicable as materials for polymer solar cells.
Macromolecular Rapid Communications | 2010
Ken Yoshimura; Lanny S. Liebeskind
We focus our attention here on semisquaric acid, which is known to show high acidity, as a new proton dissociating group for proton exchange membranes (PEMs). The introduction of a squaric acid group into aromatic polymers was conducted by the reaction of lithiated aromatic polymers and diisopropoxy squarate, followed by treatment with hydrochloric acid. A resulting polyphenylsulfone membrane with the squaric acid group introduced (PPSf-SQ, IEC = 4.1 meq·g(-1) ) showed proton conductivity of 1.0 × 10(-1) S·cm(-1) at 80 °C under 95% relative humidity, which indicates that the semisquaric acid has the potential to become an alternative proton-conducting group for PEMs.
Macromolecules | 2009
Ken Yoshimura; Katsuhiko Iwasaki
Macromolecules | 1998
Takashi Ishizone; Ken Yoshimura; and Akira Hirao; Seiichi Nakahama
Archive | 2003
Ken Yoshimura; Arihiro Yashiro; Mitsunori Nodono
Tetrahedron | 2012
Ken Yoshimura; Kei Matsumoto; Yasunori Uetani; Shigeki Sakumichi; Shuichi Hayase; Motoi Kawatsura; Toshiyuki Itoh